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Abstract

We study the dynamics of residential electricity demand by exploiting a natural

experiment that produced large and long-lasting price changes in over 250 Illinois

communities. Using a flexible difference-in-differences matching approach, we esti-

mate that the price elasticity of demand grows from −0.09 in the first six months to

−0.27 two years later. We find similar results with a dynamic model in which us-

age is a function of past and future prices. Our findings highlight the importance of

accounting for consumption dynamics when evaluating energy policy.
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Economic theory suggests that demand is typically more elastic in the long run relative
to the short run. When consumption depends on goods that are durable or habit-forming,
consumers may take years to respond fully to a price change (Topel and Rosen, 1988;
Becker et al., 1994). These dynamics pose several challenges to demand estimation. In any
period, consumption may depend upon both current and past prices, and, when consumers
are forward looking, also upon future prices. When prices fluctuate, as they typically do,
the demand response will reflect a mix of both short-term and long-term changes in con-
sumption. Finally, unless one accepts restrictive functional form assumptions, unbiased es-
timation requires a source of exogenous price variation large enough to produce detectable
effects in long-run behavior. Quantifying these demand-side dynamics is important in the
electricity sector, where suppliers, market regulators, and policymakers make decisions
with long-run ramifications.

We estimate how the price elasticity of electricity demand evolves over time by exploit-
ing an Illinois policy that generated plausibly exogenous shocks to residential electricity
prices in over 250 communities. Because these price shocks were large and lasted over two
years, we are able to estimate the demand response more flexibly and over a longer period
than prior quasi-experimental studies. We show that residential electricity consumers take
multiple years to adjust to price changes. Our event study finds an elasticity of −0.27 in
the period 25–30 months after the policy change, almost three times the magnitude of the
elasticity in the first six months (−0.09).

Our monthly consumption and price data span 2007–2014 and come from the largest
utility in Illinois, ComEd, whose territory encompassed approximately 70 percent of res-
idential consumers in the state. During this period, Illinois implemented a municipal ag-
gregation program.1 The program allowed individual communities to select new electricity
suppliers on behalf of their residents with the approval of a local referendum. This pol-
icy change resulted in large, long-lasting price changes for communities that implemented
aggregation. Our setting provides a clean natural experiment: aggregation customers con-
tinued to receive their electricity bill from the utility in the same format as before, so the
price variation in our analysis is not confounded with other billing changes. Additionally,
Illinois employs a linear price schedule for residential electricity, consisting of a modest
fixed fee and a constant marginal price. With rare and short-lived exceptions, aggregation
affected only the marginal price of electricity, greatly simplifying our analysis.

1In other settings, these programs are sometimes called “community choice aggregation.” Aggregation is
also available in California, Massachusetts, New Jersey, New York, Ohio, and Rhode Island.
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Our empirical approach combines a difference-in-differences methodology with the
matching estimator developed by Abadie and Imbens (2006, 2011). Matching estimators
are particularly well-suited to our study because electricity usage is highly seasonal, and
these seasonal patterns vary substantially across different communities and over time. The
relatively large number of ComEd communities that did not pass a referendum on aggre-
gation (479 in our sample of 768) in combination with a lengthy pre-period provides an
excellent empirical setting for a matching estimator. We find that our matching estimator
obtains more precise estimates than a traditional regression. We view our application as
a useful demonstration of matching for applied researchers, in the vein of Fowlie et al.
(2012). In contrast to their paper, we conduct inference using subsampling, which allows
for a richer space of estimators whose distributions do not have pre-existing formulas.

Our estimator matches each aggregation community to five “nearest neighbors” that did
not pass a referendum on aggregation.2 We construct the matching criteria using commu-
nities’ monthly electricity usage profiles from 2008 and 2009. This matching period long
precedes our natural experiment: more than ninety percent of the referenda in our sample
are held after February 2012, over two years later. Our identifying assumption is that the
average observed differences in usage between aggregation communities and their matched
controls in the post period are caused only by aggregation. In support of this assumption,
we document that usage patterns between aggregation communities and matched controls
are parallel after the matching period but prior to the referenda. Because we observe us-
age at a high (monthly) frequency and community referenda occur only during infrequent
statewide elections, our finding of no effect in the months immediately preceding the ref-
erenda suggests that communities did not select into aggregation based on expected usage
changes. Whether or not a community pursued aggregation was likely influenced by so-
cial and political factors, including loyalty to the utility and trust in the local government.
To the best of our knowledge, expected future usage was not discussed when considering
aggregation. In light of these factors and the absence of pre-trends, aggregation therefore
provides plausibly exogenous price variation in our sample.

We find that prices fell by 24 percent and usage increased by 6.1 percent by the end
of the first year following an aggregation referendum, relative to control communities that
did not pass a referendum on aggregation. Toward the beginning of the second year, the

2As a robustness check, we also estimate a traditional difference-in-differences regression model without
matching, using only communities that implemented aggregation. These results, presented in the Appendix,
are similar.
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expiration of a long-term ComEd contract caused a price decrease and an accompanying
usage increase in control communities. Nevertheless, during our estimation period, the
estimated price elasticity declines smoothly from −0.09 in the first six months to −0.27

two years later, illustrating the importance of long-run dynamics in this setting.
Although they are long-lasting, the relative price decreases in our sample are not con-

stant over time. Thus, the estimates above reflect a mix of both short-run and longer-run
responses. To address this shortcoming, we also estimate a dynamic model of demand
in which usage is a flexible function of past, current, and future prices. As before, our
identifying variation comes only from price differences caused by aggregation. Using this
model, we estimate an elasticity of −0.08 in the first six months following a price change
and an elasticity of −0.21 19–24 months after a price change. Accounting for the fact that
the median community implements a price change four months after a referendum, we con-
clude that the patterns estimated by the more flexible dynamic model are similar to those
from the reduced-form approach described above. Finally, we employ a parametric formu-
lation of the dynamic model to forecast that the long-run elasticity converges to−0.35 after
approximately 10 years.

Our results have significant implications for energy policy and market participants.
Generators and distributors require forecasts of the long-run demand response to price
changes to invest optimally in capacity and infrastructure. Likewise, market regulators
require these forecasts to design efficient allocation mechanisms and renewable energy
subsidies. Utilizing a short-run elasticity will lead to an underestimate of the longer-run
demand response. Using simple back-of-the-envelope calculations, we show that predicted
quantity reductions following the imposition of a carbon tax are 2.3–2.9 times larger when
using the two-year price elasticity of demand compared to using the six-month elasticity,
depending on the elasticity of supply. This difference implies that the carbon tax required
to reduce emissions by one percent is 56–65 percent smaller. Although our exact esti-
mates may not directly translate to other settings, the relative magnitudes of the short- and
longer-run elasticities suggest that other energy policies can cause a substantially larger
usage response in the long run than in the short run.

The existing electricity demand literature relies on state-level data and dynamic panel
models to estimate consumption dynamics over a longer period. The long-run elasticity
estimates vary widely, from −0.3 to about −1.1 (e.g., Kamerschen and Porter, 2004; Der-
giades and Tsoulfidis, 2008; Alberini and Filippini, 2011), and none of these estimates is
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based on quasi-experimental variation.3 Consistency in these models generally requires
strong assumptions about the form of serial correlation, and the estimates are particularly
sensitive to the exact specification used (Alberini and Filippini, 2011). Conversely, our ap-
proach makes relatively few assumptions and is substantially more flexible than what has
been done previously.

Papers outside of the dynamic panel literature typically estimate only short-run or static
price elasticities.4 Ito (2014) uses quasi-experimental variation by comparing households
located near a boundary between two California utilities, which vary in when and by how
much they change prices. He estimates an average price elasticity of −0.09 in the first 4
months following a price change, which is similar in magnitude to our six-month estimate.
Reiss and White (2005) employ cross-sectional data from California and a structural model
that exploits the non-linearity of the electricity price schedule. They estimate an average
(static) price elasticity of −0.39, but do not investigate how it evolves following a price
change.5 Our findings demonstrate the importance of such dynamics with respect to the
price of electricity: residential electricity consumers are more than twice as responsive in
the longer run relative to the short run.

A few recent papers estimate consumption dynamics in response to non-price interven-
tions or in other contexts. Allcott and Rogers (2014) estimate that the energy reductions
following random assignment of a home energy report are larger 7–12 months after the
beginning of the program, relative to 1–6 months after. On the other hand, Ito (2015) finds
that the one-year and three-year effects of an appliance rebate program are similar, suggest-
ing that not every policy induces dynamics of the kind we find in our study. In the context
of borrowing, Karlan and Zinman (2018) find that the elasticity with respect to the interest
rate nearly triples over time, from −1.1 in the first year to −2.9 in the third year.

The rest of this paper is organized as follows. Section I discusses the electricity market

3See Alberini and Filippini (2011) for a review of this literature. Some have argued that a state’s average
price of electricity is exogenous because it is regulated (Paul et al., 2009) or because the unregulated compo-
nent is driven by national trends (Bernstein and Griffin, 2005). However, electricity rates may be set based
on the anticipated cost of electricity to suppliers and that cost, in turn, may be based on anticipated demand.
Therefore, it is not possible to separate supply-side variation stemming from national changes in fuel prices
from demand-side variation without explicitly constructing instruments, and we are not aware of any papers
that employ instruments to estimate a longer-run price elasticity.

4A growing literature investigates the impact of real-time pricing (e.g., Wolak, 2011; Allcott, 2011; Jessoe
and Rapson, 2014). The elasticity we identify here is fundamentally different from the elasticity estimated in
the real-time pricing literature, which reflects intra-day substitution patterns as well as any overall reductions
in electricity consumption.

5Reiss and White (2005) estimate a same-month elasticity, which they allow to vary seasonally, and then
report the average annual value of these estimates.
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and municipal aggregation in Illinois. Sections II and III describe our data and reduced-
form empirical approach, respectively. Section IV presents reduced-form results, which
Section V then extends to a dynamic framework. Section VI discusses the implications of
our main results, and Section VII concludes.

I The Illinois Electricity Market

The provision of electricity to residential customers consists of two components: sup-
ply and distribution. Suppliers generate or procure electricity and distributors provide
the infrastructure to deliver it and often handle billing. Illinois has two regulated elec-
tricity distributors: Commonwealth Edison Co. (“ComEd”) and Ameren Illinois Utilities
(“Ameren”). Prior to 1997, they owned generating units as well as the distribution net-
work. In 1997, the passage of the Consumer Choice Act allowed for competitive supply
in the market, due to widespread agreement that, unlike distribution, electricity generation
is not a natural monopoly (Illinois General Assembly, 1997). As part of the deregulation
measures, the two utilities were encouraged to divest their generation assets. These policies
led to the entry of several alternative suppliers into the market.

Customers are assigned their distributor on the basis of geographic location. ComEd,
the distributor for whom we have usage data, serves northern Illinois, where approximately
70 percent of the state’s residents live. The supply price component of electricity deliv-
ered by Ameren or ComEd is, by law, equal to their procurement cost and does not vary
geographically.6 While customers have no choice in distributors, in 2002 residential and
small commercial customers gained the ability to choose an alternative retail electric sup-
plier (ARES) who would be responsible for supplying (but not delivering) their electricity.7

However, the residential ARES market was practically nonexistent between 2002 and 2005.
This was blamed on barriers to competition and a rate freeze that kept the default utility rate
low. In 2006, the state removed some of these barriers and instituted a discount program
for switchers, but this still had little effect on behavior. By 2009, only 234 residential cus-
tomers had switched suppliers. By contrast, 71,000 small commercial, large commercial,
and industrial customers had switched (Spark Energy, 2011).

Motivated by these patterns, the Illinois Power Agency Act was amended in 2009
to allow for municipal aggregation, whereby municipalities and counties could negotiate

6Profits stem from delivery fees set by the Illinois Commerce Commission (DeVirgilio, 2006).
7Large commercial and industrial customers gained this ability at the end of 1999.
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the purchase of electricity on behalf of their residential and small commercial customers.
Townships gained this ability in 2012. To ensure that individual consumers retained the
ability to choose their supplier, the amendment required municipalities to allow individuals
to opt out of aggregation.

To implement an opt-out aggregation program, a municipality had to publicize the pro-
posal, hold a town hall meeting to educate the community, register the proposed aggrega-
tion program with the state, and hold a referendum. Referenda dates followed the state
electoral calendar: they were held in March or November in even years and in April in odd
years. The wording of the referendum question was specified in the Illinois Power Agency
Act and is reproduced in Section 1 of the Appendix. In most cases where the referendum
was approved, multiple suppliers submitted bids for predetermined contract lengths (e.g.,
one-, two-, and three-year contracts). In other cases, the municipality negotiated directly
with a supplier. The two main ways in which suppliers differentiated themselves were price
and the share of generation from renewable sources. Nearly all communities selected the
supplier with the lowest price, although environmental preferences occasionally induced
communities to select a more expensive one.

When determining the bid or negotiating directly, each supplier obtained community-
level usage data from the distributor. These usage data, along with electricity futures, were
the main factors in each offered price.8 Importantly, our analysis employs the same usage
data, which reduces the likelihood that price changes are affected by confounding factors
that are unobservable to us. Because many of communities’ first contracts were in effect
through the end of our usage data, the price variation we employ comes mainly from the
first set of aggregation contracts in Illinois.

Overall, municipal aggregation was popular in Illinois. Of the roughly 2,100 communi-
ties in the ComEd and Ameren service territories, 741 had voted to implement aggregation
as of March 2016. In our setting, the realized savings from aggregation came largely from
the timing of the program. During our sample period, alternative suppliers were able to
offer lower rates due to the unexpected boom in shale gas, while ComEd was locked into a
long-term high-price procurement contract.

Customers in a community that passed an aggregation referendum were automatically
switched to the newly chosen electricity supplier unless they opted out by mailing in a

8Suppliers may have also based their bids on the number of electric space heat customers, which we do
not observe. In Illinois, only about 10 percent of households heat their homes with electricity (U.S. Energy
Information Administration, 2009).
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card, calling, or filling out a form online.9 Aggregation officially began at the conclusion
of the opt-out process. From the consumer’s point of view, the only visible change was the
supply price of electricity on her bill, which was still issued by the incumbent distributor
(Ameren or ComEd). The design of the bill, as well as the value of the non-supply prices,
remained identical for all customers in the distributor’s territory regardless of aggregation.
Conveniently, this means that the price effects of aggregation were not confounded with
changes in a bill’s appearance. Figures A.1–A.4 in the Appendix display a sample letter
notifying households of aggregation, a sample opt-out card, and a sample ComEd bill.

Our estimation approach assumes that municipal aggregation was not accompanied by
other programs that could also affect electricity usage. A careful review of news articles,
aggregation-related announcements, and other online materials did not turn up any evidence
contradicting this assumption. ComEd runs several energy-related rebate and discount pro-
grams, but these were offered uniformly to all communities in its service territory during
our sample period (with the exception of small pilot programs, which are typically con-
ducted in communities near ComEd’s headquarters in Chicago). Moreover, ComEd does
not have a strong profit incentive to target its rebate and discount programs to aggrega-
tion or non-aggregation communities. By law, ComEd makes zero profits from electricity
supply. Instead, its profits come from distributing electricity, and ComEd remained the
distributor in all the aggregation communities in our sample.

II Data

We obtained electricity usage data directly from ComEd. The data contain monthly resi-
dential electricity usage at the municipality level for ComEd’s 887 service territories from
February 2007 through June 2014. We drop 108 communities that were missing data, did
not appear to have consistent geographic boundaries during our sample period, or could
not be assigned an aggregation status with confidence. For our main analysis, we also drop
an additional 11 communities that passed a referendum approving aggregation but never
implemented the program. The resulting dataset is a balanced panel of monthly electricity

9While we do not have an exact number, ComEd and several energy suppliers have told us that the opt-
out rate was low. Community-specific opt-out rates mentioned in newspapers range from 3 to 10 percent
(e.g., Lotus, 2011; Wade, 2012; Ford, 2013). The number of non-aggregated customers did, however, grow
slowly over time because new residents who moved to an aggregation community were not defaulted into the
aggregation program. The few residential customers who had already opted into an ARES or into real-time
pricing prior to aggregation were not switched over to the chosen supplier.
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Table 1: Count of Aggregation Communities in Sample

Referendum Date Implemented Passed, Not
Implemented

Voted, Not
Passed

November 2010 1 0 0
April 2011 18 0 0
March 2012 164 0 28
November 2012 57 5 2
April 2013 38 3 6
March 2014 8 1 0
November 2014 3 2 0

Total 289 11 36

usage for 768 ComEd communities.10

We constructed the time series of ComEd electricity rates using ComEd ratebooks ob-
tained from the Illinois Commerce Commission. Prior to June of 2013, customers with
electric space heating faced a lower rate than those with non-electric space heating. Be-
cause only about 10 percent of households in Illinois heat their homes with electricity (U.S.
Energy Information Administration, 2009), we assume that the incumbent rate was equal to
the non-electric space heating rate, which was true for the majority of non-aggregation cus-
tomers. Data on aggregation referenda dates, aggregation supply prices, and aggregation
implementation dates were obtained from a variety of sources, including PlugInIllinois,
websites of electricity suppliers, and municipal officials. We describe these sources in
further detail in Section 2 of the Appendix.

As shown in Table 1, 300 communities in the ComEd territory passed a referendum
on aggregation during our sample period, and 289 of those communities eventually imple-
mented an aggregation program. In addition, 36 communities voted on, but did not pass,
the referendum.11 The geographic locations of the 768 aggregation and non-aggregation
communities in our sample are displayed in Figure 1. Aggregation communities are well-
dispersed throughout the ComEd territory but are slightly more prevalent in the greater
Chicago area.

Our discussions with industry participants suggest that social and political factors, such
as whether the local government should involve itself in negotiating electricity prices,

10See Section 2 of the Appendix for additional data details. Ameren, the other distributor in Illinois,
declined our data request.

11We investigated the possibility of employing a regression discontinuity approach based on the fraction
voting “yes” or “no”, but we do not have enough power. There are only 20 communities where the referendum
failed by less than five percentage points.
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Figure 1: Spatial Distribution of Communities in Sample
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Notes: Figure displays the locations of communities in our sample. Plus signs indicate communities that
implemented aggregation. Circles indicate communities that did not pass aggregation.

played a role in a community’s decision to hold a referendum. To the best of our knowledge,
changes in expected future usage were not a consideration.12 Anecdotally, the reasons why
some communities voted against aggregation include: (1) lack of trust in the local govern-
ment to secure savings relative to the incumbent; (2) loyalty to the utility; (3) concern about
the environmental impact of the resulting electricity use increase; (4) a misunderstanding
about the opt-out provision; and (5) the belief that choosing an electricity provider for
residents was not an appropriate government function.

There is some variation in how long communities take to implement price changes af-
ter approving aggregation. The median length of time between passage of the aggregation
referendum and commencement of the aggregation program is 4 months. At least 10 per-
cent of aggregation communities switched suppliers within 3 months of the referendum,
whereas 10 percent had not done so 6 months afterward. For our reduced-form results,
we construct estimates relative to the referendum date to capture any usage response that
occurred prior to the actual price change.

Many states employ a “block pricing” schedule where the marginal price of electricity
increases with quantity purchased. Illinois, by contrast, employs a constant marginal price
and a moderate fixed fee, which simplifies our analysis because it reduces confusion over

12Our understanding of the motivations behind aggregation is guided by local news articles, local govern-
ment meeting minutes, in-person discussions with ComEd and the Illinois Commerce Commission (Illinois’
electricity regulator), and phone conversations with industry participants.
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Figure 2: Prices for Aggregation and Non-Aggregation (ComEd) Communities

(a) Monthly Electricity Rates, 2008-2016
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Notes: The thick blue line in panel (a) displays the average supply rate among all communities that adopted
aggregation. The first community adopted aggregation in June of 2011. Non-aggregation communities pay
ComEd’s supply rate (thick, dashed red line in panel (a)). The thin green line in panel (a) displays the total of
all other electricity rates on a consumer’s residential bill, which do not depend on whether a community has
adopted aggregation. All displayed rates are for a single family residence with non-electric heating. The thin
dashed line in panel (a) indicates the cumulative number of communities that have implemented aggregation.
Panel (b) displays the mean (total) electricity price for aggregation communities as a function of the time
since referendum and compares it to the corresponding ComEd price. The short dashed vertical line indicates
the median implementation date relative to when the referendum was passed.

the “price” to which consumers might be responding. This constant marginal price can be
broken down into three main components: supply, delivery, and taxes/fees. Implementing
aggregation entails a community signing a contract with a supplier for a particular supply
rate (the largest component of the marginal price); delivery charges and other fees remain
the same. Non-aggregation communities pay the default ComEd supply rate. Thus, aggre-
gation only affects the marginal price of electricity. Nearly all suppliers offered contracts
with a constant supply rate, with most terms ranging from 9 months to 3 years.

Figure 2 demonstrates the price variation in our sample. The thick dashed line and thin
green line in panel (a) display ComEd’s monthly supply rate and the total of all other usage
rates, respectively, during and after our sample period. ComEd’s supply rate decreased
significantly in 2013, when a long-term high-price power contract expired. We discuss the
implications of this shock for the interpretation of our estimates in Section IV. In response
to this price drop, several communities switched back to ComEd when their aggregation
contracts expired in June of 2014. This reversal is visible in the black dashed line, which
displays the count of aggregation communities over time.

The thick blue line in panel (a) shows the average monthly supply rate for aggrega-
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tion communities, starting from when the first community implemented aggregation (June
2011). During our sample period (2008–2014), the average aggregation supply rate is
always lower than the default ComEd supply rate, although the two rates converge in mid-
2015. We also note that the month-to-month variation in the ComEd rate is small relative
to the level shocks brought about by aggregation and the June 2013 ComEd contract expi-
ration.

Another way to visualize the price variation in our sample is to plot the mean residential
electricity prices for aggregation communities relative to the referendum date (panel (b) of
Figure 2). The displayed price combines the supply rate with the other usage charges
from panel (a). For comparison, we also show the mean contemporaneous ComEd rate.
The figure illustrates the two large price reductions during the time period spanned by our
sample. Averaging the price changes along the x-axis, we observe a 25 percent reduction
for communities upon implementation, and a 10 percent reduction for non-aggregation
communities about 15 months after the average date of a successful referendum, reflecting
the June 2013 drop in the ComEd supply price. There was also significant cross-sectional
variation in the aggregation price shocks (see Figure A.5 in the Appendix), but, for nearly
all communities in nearly every month, aggregation reduced prices.

Variation in aggregation prices is due to differences in (i) the timing of the referenda; (ii)
community procurement strategies; and (iii) the load profiles of the communities. This last
source of variation raises the concern that suppliers might have charged different prices
to communities with different expected future usage. Our estimation approach mitigates
this issue because it matches aggregation communities to their non-aggregation controls
based on the same community-level usage data that suppliers used to determine prices.
Furthermore, we investigate the potential for price endogeneity by estimating elasticities
separately by percentiles of the realized price change, and we find no relationship (see
Section IV.B).13

Both the aggregation-driven price changes and the 2013 drop in the ComEd price were
likely more salient to customers than typical month-to-month changes in electricity rates.
Aggregation is publicized in advance of the referendum, and each household receives a

13An additional concern is that the implementation of aggregation could influence the supply price paid
by remaining ComEd customers through a reverse causality channel: if communities with favorable load
profiles implemented aggregation, then the remaining ComEd communities would be more costly to serve,
causing ComEd to increase its price. However, ComEd still supplied a large pool of customers throughout
our sample period, and the fact that aggregation prices converged to the ComEd price in 2015–2016 suggests
that selection based on the load profile is not a significant concern in our setting.
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mailer informing them of the new aggregation price. Likewise, the drop in ComEd prices
received statewide attention in the press.14 Though we cannot say whether other potential
energy policies that affect electricity prices (e.g., a carbon tax) will be more or less salient,
they are also likely to be anticipated and publicized. Aggregation therefore provides a good
setting for assessing the residential usage response to energy policies.

Finally, because ComEd’s supply price does not vary geographically, we can use our
raw data to calculate the savings aggregation communities obtained from switching suppli-
ers. Specifically, we multiply aggregation communities’ observed electricity usage by the
price difference each month and aggregate over our sample period. We estimate that the
residential aggregation consumers in our sample saved $566 million through June 2014.

III Empirical Strategy

A Difference-in-Differences Matching Estimator

To estimate the price elasticity of demand, we first estimate changes in electricity usage
brought about by aggregation. We match communities that implemented aggregation (the
“treated” group) to communities that did not (the “control” group) based on their pre-
aggregation electricity usage. We then apply a difference-in-differences adjustment to the
bias-corrected matching estimator developed by Abadie and Imbens (2006, 2011). For each
of the 289 communities that implemented aggregation, we use 2008–2009 electricity usage
data to identify the five nearest neighbors from the 479 communities in our sample that
did not implement aggregation. We average annual log usage and monthly log deviations
from annual usage across 2008 and 2009 to construct 13 match variables. We standardize
the variables and use an equal-weight least squares metric to calculate distances between
communities. That distance is then used to select the five nearest neighbors for each treated
community.15

We use these nearest neighbors to construct counterfactual usage and employ standard
difference-in-differences techniques to adjust for pre-period differences. The identifying
assumption is that, conditional on 2008–2009 usage, the passage of aggregation and subse-

14See, for example, “Some ComEd customers to see lower prices,” Chicago Tribune, April 1, 2013.
“What’s happening to your electric bill June 1?” Citizens Utility Board, May 30, 2013.

15We allow non-aggregation communities to be selected as neighbors for multiple aggregation commu-
nities; i.e., each aggregation community draws from an identical set of potential controls. Table A.1 in the
Appendix shows that the results are very similar if we instead select the single nearest neighbor or the ten
nearest neighbors.
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quent price changes are unrelated to anticipated electricity use. We provide evidence that
this assumption is reasonable by showing that trends in usage for the control and treated
groups remain parallel after the matching period but before the passage of aggregation.

Let Yit denote log usage for community i in period t, where t = 0 corresponds to the
referendum date for each treated community. For control communities, t = 0 corresponds
to the referendum date of the treated community to which they have been matched. Let
the indicator variable Di be equal to 1 if a community ever implements aggregation and 0
otherwise. The outcome Yit is a function ofDi, so that, for aggregation communities, Yit(1)

indicates usage when treated and Ŷit(0) indicates estimated counterfactual usage when not
treated. Given Yit(1) and Ŷit(0), we can obtain a community-specific estimate of the effect
of aggregation on usage, ∆̂Y it:

∆̂Y it = Yit(1)− Ŷit(0). (1)

We observe the outcome Yit(1) for the treated communities in our data. The counter-
factual outcome, Ŷit(0), is unobserved and is calculated as follows. For each treated com-
munity i, we select M = 5 nearest neighbors using the procedure previously discussed.
Let JM(i) denote the set of control communities for community i. The counterfactual
outcome, Ŷit(0), is then equal to

Ŷit(0) = µ̂
m(t)
i +

1

M

∑
j∈JM (i)

(
Yjt(0)− µ̂m(t)

j

)

=
1

M

∑
j∈JM (i)

Yjt(0) +

µ̂m(t)
i − 1

M

∑
j∈JM (i)

µ̂
m(t)
j

 ,

where
µ̂
m(t)
i =

1

2

(
Y 2008
i,m(t) + Y 2009

i,m(t)

)
.

The parameter µ̂m(t)
i is a non-parametric bias correction that accounts for the average

month-by-month usage patterns of each community. The variables Y 2008
i,m(t) and Y 2009

i,m(t) rep-
resent observed usage for community i in calendar month m(t) in 2008 and 2009, respec-
tively.16 Thus, the estimated counterfactual Ŷit(0) is equal to the average usage for a treated
community’s nearest neighbors plus the difference in usage between that community and

16For example, if t = 25 is January 2014, then µ̂
m(25)
i = 1

2

(
Y 2008
i,m(25) + Y 2009

i,m(25)

)
=

1
2

(
Y 2008
i,January + Y 2009

i,January

)
is equal to the average log usage in January 2008 and January 2009.
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its neighbors averaged across the 2008–2009 calendar months corresponding to t.
Finally, we obtain a community-specific “difference-in-differences” estimate of the im-

pact on usage by netting out the average change in usage in the year prior to treatment. This
estimate is defined as

τ̂it = ∆̂Y it −
1

Ns

Ns∑
s=1

∆̂Y i,−s, (2)

where Ns indicates the number of periods in the year prior to the policy change.17 The ∆̂Y

terms on the right-hand side of equation (2) are defined in equation (1). Our difference-in-
differences estimate τ̂it thus reflects the difference in usage between a treated community
and its matched control communities in period t, relative to the average difference in the
year leading up to the policy change.

To quantify the average impact of the policy on usage, we take the mean of the community-
specific treatment effects:

τ̂ t =
1

N1

N1∑
i=1

τ̂it. (3)

where N1 denotes the number of treated communities in our sample. Because the policy
change occurs at the community level, and we only include communities that implement
aggregation, we interpret this estimate as the effect of the treatment on the treated.18

In our setting, the aggregation electricity price is announced months before the actual
price change occurs. Thus, consumers may respond to future price changes by, for example,
placing less weight on energy efficiency when replacing old appliances, changing their
thermostat program, or changing energy use habits. Prior studies have found evidence of
forward-looking behavior by energy consumers (Allcott and Wozny, 2014; Myers, 2016).
Failing to account for such behavior could lead to biased estimates (Malani and Reif, 2015).

Since we do not observe exactly when the price change is announced, our main spec-
ification estimates effects that are relative to the referendum date, rather than when ag-
gregation was implemented. Section 4 of the Appendix presents evidence of anticipatory
behavior by estimating changes in electricity use after the referendum is passed but before
a community switches to a new supplier.19 Using only pre-implementation data, we find

17For monthly estimates, Ns = 12. For biannual estimates, Ns = 2.
18Because a small proportion of households opted out of aggregation, at the household level our estimate

reflects an intent-to-treat effect (conditional on implementing aggregation).
19It is also possible for consumers to make changes even prior to the passage of the referendum, in antici-

pation that it will pass and that electricity prices will fall. We find no evidence of such behavior.
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small but noticeable usage increases of 0.012 to 0.035 log points three to five months after
passage of the referendum but before the price changes had occurred.

We estimate price changes the same way we estimate usage changes: by comparing
prices in each treated community to its matched controls. Because electricity rates do not
vary in the cross-section for non-aggregation communities, the price difference is exactly
zero prior to a community’s implementation of aggregation. Therefore, the difference-
in-differences estimate of log price changes is simply the observed difference between the
community’s aggregation rate and the ComEd rate, ∆ ln pit. The mean effect of aggregation
on prices is the average of these differences:

∆ ln pt =
1

N1

N1∑
i=1

∆ ln pit. (4)

B Estimating Elasticities

To obtain elasticities, we regress community-specific estimates of the change in usage on
community-specific price changes. We estimate separate elasticities over time in order to
show how the elasticity changes dynamically. For each post-referendum period, g, the
corresponding elasticity, βg, is obtained via the regression

τ̂it = βg ·∆ ln pit + ηit ∀t ∈ g. (5)

We estimate two versions of this specification. First, we estimate equation (5) separately
for each month post-referendum (i.e., {g} = {t}). Second, to increase the precision of our
estimates, we group the data into six-month intervals and estimate equation (5) for each of
these groups. In this second specification, βg is the average elasticity for each six-month
period. We also report estimates of the mean change in log price and in log usage in each
six-month period, 1

|g|
∑

t∈g ∆ ln pt and 1
|g|
∑

t∈g τ̂ t.
The elasticities estimated by equation (5) are accurate to the extent that the post-period

price changes in our sample can be reasonably approximated by a one-time, permanent
change in price. We account for the empirical variation in prices over time in Section V,
where we estimate a more flexible model that disentangles the short-run response to price
changes from the longer-run response.
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C Inference

Because matching estimators do not meet the regularity conditions required for bootstrap-
ping (Abadie and Imbens, 2008), we employ a subsampling procedure to construct confi-
dence intervals for our matching estimates.20 Subsampling, like bootstrapping, obtains a
distribution of parameter estimates by sampling from the observed data.

Consider a parameter of interest, θ̂. For each of Nb = 500 subsamples, we select with-
out replacementB1 = R·

√
N1 treated communities andB0 = R· N0√

N1
control communities,

where R is a tuning parameter (Politis and Romano, 1994) and N0 is the number of control
communities. As before, N1 is the number of treated (aggregation) communities. For each
subsample, we calculate θ̂b. The matching estimator converges at rate

√
N1 (Abadie and

Imbens, 2006, 2011), and the estimated CDF of θ̂ is given by:

F̂ (x) =
1

Nb

Nb∑
b=1

1

{√
B1√
N1

(
θ̂b − θ̂

)
+ θ̂ < x

}
The lower and upper bounds of the confidence intervals can then be estimated as F̂−1(0.025)

and F̂−1(0.975).
Subsampling requires a large number of effective observations (i.e., treated units) in

each subsample, but it also requires that this number be small relative to the total number
of effective observations in the full sample. We employ R = 3 (B1 = 51) for the confi-
dence intervals and standard errors reported in the paper, which prioritizes the large-sample
properties within each subsample. Table A.2 in the Appendix compares standard errors for
different values of the tuning parameter R and shows they are robust.

D Advantages of Matching Estimators with Electricity Data

A key advantage of the nearest-neighbor approach is that it eliminates control communities
that are not observationally similar to treated communities and whose inclusion would thus
add noise (and possibly bias) to the estimation. Electricity usage is highly seasonal, with
peaks in winter and summer and troughs in spring and fall (see Figure A.6 in the Appendix),
and the degree of seasonality varies widely across the different communities in our sample.

20Abadie and Imbens (2006, 2011) provide a formula for the standard errors of bias-corrected matching
estimators of average treatment effects. Our panel data structure and the use of match-specific indexing for
the control communities relative to the treated communities preclude a simple implementation of this formula.
Further, our main estimates are not simple average treatment effects.

16



Figure 3: Comparing Regression to Nearest-Neighbor Matching

(a) Regression
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(c) Treatment and All Controls: Difference

-.0
5

0
.0

5
.1

D
iff

er
en

ce
 in

 (A
dj

us
te

d)
 L

og
 U

sa
ge

2007m1 2008m1 2009m1 2010m1 2011m1 2012m1 2013m1 2014m1
Date

(d) Treatment and Matched Controls: Difference
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Notes: Panel (a) displays seasonally-adjusted usage for all aggregation and non-aggregation communities.
The red line corresponds to the control group in a typical regression, with community-specific month-of-
year fixed effects. Panel (b) employs the nearest-neighbor matching procedure, in which five communities
are selected for each aggregation community, and the control line is weighted by how often each control
community is selected. Panels (c) and (d) plot the differences between the treatment and control lines in
panels (a) and (b), respectively. The vertical dashed lines indicate the first referendum date. We match on
usage during the 24 months in 2008 and 2009. The matching window is indicated by the vertical dotted lines
in panels (b) and (d).

Identifying control communities with usage profiles similar to aggregation communities
can therefore greatly increase precision.

Figure 3 provides a demonstration of this benefit. Panel (a) displays electricity us-
age adjusted for community-level monthly seasonal patterns (Yit − µ̂m(t)

i ) for aggregation
(treated) and non-aggregation (control) communities. Even after accounting for community-
specific seasonality using monthly data from 2008 and 2009, usage varies greatly within
and across years: the largest peak occurs in July 2012, which corresponds to a record heat
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wave. By contrast, summer peaks are much less pronounced in 2009 and 2013, when the
summers were mild. The difference between these two time series, which corresponds to an
event study regression with community-specific month-of-year fixed effects, is displayed
in panel (c). The increase in the difference is visible beginning in late-2011, which can be
attributed to the implementation of aggregation, but this difference is quite noisy. The het-
erogeneity in seasonal patterns poses a challenge for a standard regression that compares
treated communities to all control communities in the sample: it is difficult to estimate
an effect when the baseline month-to-month divergence in usage is of the same order of
magnitude as the effect.

Panels (b) and (d) of Figure 3 show analogous plots for the nearest-neighbor matching
approach discussed above. Vertical dotted lines indicate the matching window of 2008
through 2009. Panel (d) shows again that the difference in log usage between treatment and
(matched) control communities increases beginning in late-2011. The difference in panel
(d) exhibits far less noise than the difference displayed in panel (c), however, because
the matching estimator selects only those control communities that are similar to treated
communities. This method of selection allows the matching estimator to generate more
precise estimates than the standard difference-in-differences estimator.21

IV Results

A Main Results

We first show that electricity prices fell substantially and persistently following the pas-
sage of aggregation referenda. Panel (a) in Figure 4 displays the average change in log
prices for aggregation communities, relative to their matched controls (∆ ln pt). The price
change is exactly equal to zero in the pre-period because the treated communities face the
same ComEd supply prices as their matched control communities during that time period.
Within 12 months of passing the referendum, prices in aggregation communities decrease
by 0.27 log points (about 24 percent) relative to control communities, although they re-
bound significantly a few months into the second year. The rebound is attributable to a
sharp decrease in ComEd’s supply price in June of 2013 (see Figure 2). Nonetheless, ag-

21In terms of demographic characteristics, communities that implemented aggregation are significantly
larger, younger, and more educated than those that did not. However, after matching on electricity usage, the
matched controls are more similar to the aggregation communities along these and other dimensions. See
Table A.3 in the Appendix for a comparison. Note that matching directly on these additional variables would
select controls that are less similar in terms of pre-aggregation usage and would add noise to our estimates.
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Figure 4: Reduced-Form Effects of Aggregation on Electricity Prices and Usage

(a) Effect of Aggregation on Log Price
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(b) Effect of Aggregation on Log Usage
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Notes: Panel (a) shows the effect of aggregation on the log of the electricity price, as calculated by equation
(4). Because treatment and control communities faced the same price prior to aggregation, the pre-period
difference is exactly zero. Panel (b) shows the effect of aggregation on average log electricity usage, as cal-
culated by equation (3). These estimates are normalized so that the average usage difference in the year prior
to the referendum is zero. The short dashed line displayed in both panels indicates the median implementa-
tion date relative to when the referendum was passed (4 months). Confidence intervals are constructed via
subsampling.

gregation prices stay at least 10 percent lower than the control communities for most of the
remaining estimation period.

Panel (b) in Figure 4 displays the corresponding estimates for electricity usage (τ̂ t).
Prior to the referendum, the difference in usage between aggregation and control commu-
nities is nearly constant and never significantly different from zero. We emphasize that
this result is not mechanical, as our 2008–2009 matching period predates the vast majority
of successful aggregation referenda by at least two years (see Table 1).22 Following the
referendum, relative usage in aggregation communities increases by about 0.06 log points
(6.1 percent) by the end of first year after the referendum. This difference shrinks to about
0.04 log points (4.1 percent) at month 15 because of the ComEd price decrease; it then
stabilizes. Because the aggregation prices are stable around the date of the ComEd price
drop (see Figure 2), this pattern provides persuasive evidence that both aggregation and
non-aggregation communities are responding to their respective price changes. Thus, our
results are not driven merely by the salience of the price change brought about by aggrega-
tion.

22Specifically, 270 of the 289 aggregation communities have virtually no overlap between the matching
period and the pre-period estimates in Figure 4.
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Figure 5: Reduced-Form Price Elasticities

(a) Monthly
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(b) Biannual
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Notes: This figure plots estimates of β̂g from equation (5). Each point estimate comes from a separate regres-
sion of estimated community-specific changes in usage on the corresponding price changes for a particular
post-referendum time period g. Panel (a) reports estimates from a series of monthly regressions. Panel (b)
reports estimates from an analogous specification that groups the data into six-month intervals. The estimates
in panel (b) are also reported in Table 2. Confidence intervals are constructed via subsampling.

Figure 5 displays reduced-form estimates of the price elasticity of demand (equation
(5)). We present both monthly and biannual elasticities. Due to their greater precision, we
consider the biannual estimates our primary specification, and we summarize them in Table
2.23 The elasticity estimates increase in magnitude from about −0.09 in the first 6 months
following the referendum up to −0.27 two years later, indicating that consumers are much
more elastic in the long run than the short run and ruling out a constant price elasticity. In
other words, usage does not respond fully to price changes in the near term.

The time-varying elasticity shown in Figure 5 is not due to the delay between the dates
of the referenda and the dates of the actual price changes. While it is true that usage
patterns in Figure 4 reflect the lag between referenda and implementation, so do the price
patterns. As the usage changes are scaled by the price changes, the implementation lag does
not matter when calculating elasticities. For example, if the price elasticity were in fact
constant over time, we would estimate it as such, even in the presence of implementation
delays.

The sharp decrease in the estimated monthly elasticity at month 15 in Figure 5 corre-

23Point estimates for monthly elasticity estimates can be found in Table A.4 in the Appendix. Table A.5
reports the corresponding yearly estimates. We have also estimated a specification that models the price
elasticity as a quadratic function of the number of months since the referendum. The results, displayed in
Figure A.7, are very similar.
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Table 2: Matching Estimates of the Effect of Aggregation on Usage and Prices

Post-Referendum Period Log Usage Log Price Elasticity Usage Obs. Price Obs.

1-6 Months 0.014*** -0.098*** -0.094*** 1692 1692
(0.003) (0.003) (0.019)

7-12 Months 0.050*** -0.249*** -0.155*** 1668 1668
(0.007) (0.007) (0.020)

13-18 Months 0.043*** -0.147*** -0.228*** 1516 1515
(0.005) (0.002) (0.027)

19-24 Months 0.039*** -0.132*** -0.272*** 1155 1155
(0.006) (0.003) (0.043)

25-30 Months 0.043*** -0.120*** -0.275*** 606 604
(0.007) (0.004) (0.039)

Significance levels: * 10 percent, ** 5 percent, *** 1 percent. Estimates are constructed by a nearest-neighbor
matching approach where each aggregation community is matched to the five non-aggregation communities
with the most similar usage in 2008 and 2009. The Log Usage and Log Price columns report average effects
as calculated by equations (3) and (4), respectively. The Elasticity column reports regression estimates of
β̂g from equation (5). Each elasticity estimate corresponds to a separate regression. The number of price
observations corresponds to the number of observations used for each elasticity estimate. Standard errors,
given in parentheses, and statistical significance levels are calculated via subsampling.

sponds to the large ComEd price decrease. Because the adjustment process is dynamic,
the usage difference does not shrink as quickly as the price difference, which causes the
estimated monthly price elasticity to increase in magnitude temporarily. This demonstrates
a challenge with interpreting the reduced-form price elasticity: our estimate captures a mix
of short-run and longer-run responses to (1) the price decrease due to aggregation; (2) the
drop in ComEd prices in June 2013; and (3) the monthly variation in the ComEd rate. In
addition, consumers may respond to anticipated price changes. These caveats aside, the
growth over time in the magnitude of the estimated elasticity suggests that the long-run
effects of aggregation dominate the shorter-run responses to other price changes.

The finding that consumers are more elastic in the long run than in the short run is
consistent with several mechanisms, including habit formation, inattention, learning, and
slow-moving investments in appliances and home insulation. For example, Brandon et al.
(2017) find that 35–55 percent of the energy reductions due to a non-price intervention (a
home energy report) persist even after the treated household moves out of the dwelling,
suggesting that investments in physical capital matter for energy consumption changes in
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their setting. In order to gauge the potential role of appliance replacement in our setting, we
perform a simple back-of-the-envelope calculation. Suppose that new appliances bought in
non-aggregation communities used 10–20 percent less energy than new appliances bought
in aggregation communities.24 To account for the estimated 4 percent energy use differ-
ence two years after aggregation, 20–40 percent of appliances would need to be replaced
within this time period. This value is higher than the typical two-year replacement rate
for major household appliances, which ranges from 5–20 percent.25 Thus, while appliance
replacement behavior can explain some of our findings, other mechanisms—such as those
mentioned above—likely play a role. Because we do not have data on consumer behav-
ior beyond electricity consumption, we do not attempt to further distinguish among these
different adjustment channels.

B Robustness Checks and Extensions

Our main identifying assumption is that the price changes caused by aggregation were un-
correlated with expected future changes in usage, conditional on our control communities.
If suppliers offered different prices based on predicted future usage, this price targeting

might generate bias in our estimates. Our nearest-neighbor controls are selected based on a
community’s historical usage data, which are the same data used by suppliers to determine
prices. Therefore, we think that systematic correlation between price and unobservable fac-
tors that affect post-referendum usage is unlikely. We also perform a simple empirical test
for price targeting by suppliers. We split the treated communities into seven equal groups
based on the price change they experienced in the first two years following their referenda.
We then calculate the average elasticity separately for each group by pooling observations
in this two-year period and estimating equation (5). If suppliers were offering prices to
communities based on expected changes in demand, then we might find a systematic rela-
tionship between estimated elasticities and prices. However, we find no clear relationship
between the two. Figure A.8 in the Appendix plots these estimates.

24This difference reflects the gap between ENERGY STAR efficiency and the minimum required efficiency.
Houde (2018) shows that appliance manufacturers tend to bunch their product offerings at these two levels.

25Clothes washers, clothes dryers, and water heaters have a lifespan of about 10 years, refrigerators have
a lifespan of about 15 years, and air conditioners have a lifespan of 15–20 years. Moreover, some aggrega-
tion households are likely to continue purchasing ENERGY STAR appliances, while some non-aggregation
households purchase non-ENERGY STAR appliances, implying that an even larger replacement rate would
be necessary to generate the effects we observe. For reference, in 2009, 54 percent of clothes washers, 4 per-
cent of water heaters, 40 percent of refrigerators, 34 percent of air conditioners, and 76 percent of dishwashers
sold in Illinois were ENERGY STAR certified (Environmental Protection Agency, 2018).
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We chose January 2008 through December 2009 as our matching period because it
allowed us to closely match controls to treated communities while also providing a fairly
long post-matching period to test for pre-trends. We have also estimated our model using
an alternative matching period of February 2007 through January 2009.26 These results are
very similar to those in the paper and are available upon request. Additionally, we show in
Table A.1 of the Appendix that we obtain similar results if we match to the single nearest
neighbor or the ten nearest neighbors, instead of the five we use as our baseline.

As a placebo test, we estimate how usage evolves for communities that passed a refer-
endum but never implemented aggregation (see Figure A.9 in the Appendix). Although the
estimates are noisy, they suggest that there was no increase in usage due to the referendum
itself in those communities.

We have also estimated the effect of aggregation on electricity usage using a difference-
in-differences reduced-form approach without matching. In this analysis, which we discuss
in detail in Section 3 of the Appendix, we exploit the variation of the timing of imple-
mentation among aggregation communities. The results are qualitatively similar to the
results presented in the main text. In particular, we again find a price elasticity that grows
post-referendum but no evidence of pre-trends, supporting the identifying assumption that
passage of aggregation was not prompted by expected growth in electricity usage.

Our setting also allows us to test for pre-period changes in behavior. Following the
passage of the aggregation referendum and choice of a new supplier, all residents were
notified by mail of the new price and the exact month it took effect. In results shown and
discussed in Section 4 of the Appendix, we find that consumers responded prior to the price
change: usage increased shortly after passage of the referendum, but before the actual price
decrease several months later. Unfortunately, we lack data to identify the primary mecha-
nism driving this behavior, which could be rational anticipation or confusion. Regardless of
the mechanism, this result provides evidence that consumers begin adjusting their electric-
ity usage prior to realized price changes, suggesting that the myopic “partial adjustment”
model typically estimated in the energy literature (Hughes et al., 2008; Alberini and Filip-
pini, 2011; Blázquez et al., 2013) could be systematically biased.

Finally, it is worth noting that Illinois is similar to the U.S. as a whole along several
dimensions related to electricity consumption. We describe the relationship between key

26We do not include January 2007 in the alternative matching period because reported usage in this month
is inexplicably low for many communities. This shortfall suggests that the usage data in the first month of the
sample are incomplete.
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U.S. and Illinois demographics in Section 5 in the Appendix. To understand how our results
generalize to geographies with different demographics, that section also explores how our
elasticity estimates vary by communities’ socioeconomic characteristics.

V Accounting for Dynamics

A Framework

The presence of dynamics poses a challenge to interpreting the results in the previous sec-
tion: because relative prices are changing over time (see Figure 4), contemporaneous usage
reflects both a short-run response to recent price changes and a longer-run response to
earlier price changes. In general, dynamics in consumer behavior imply that usage is a
function of past and (potentially) future prices.27 In this section, we explicitly account
for these dynamics by regressing our community-specific matching estimates of log usage
changes, τ̂it, on lags and leads of log price changes:

τ̂it =

L2∑
r=−L1

δr ·∆ ln pi(t−r) + ηit. (6)

The number of leads in the regression is equal to L1, and the number of lags is L2. We con-
sider four specifications, constructed such that each has a different set of 31 coefficients:
(L1, L2) ∈ {(18, 12), (12, 18), (6, 24), (0, 30)}. To convert these estimates to a price elas-
ticity s months after a price change, we construct the dynamic elasticity parameter

βs :=
s∑

r=−L1

δr. (7)

Although our usage data end in June 2014, we observe prices through 2016, allowing us
to estimate equation (6) without losing observations. To reduce sensitivity to outliers, we
estimate this model using median (minimum absolute deviation) regressions instead of least
squares.28

To reduce noise in the estimates, we also estimate a parametric specification of equation
(6). This specification still relies on our quasi-experimental variation, but it restricts the

27See the conceptual framework presented in Section 6 of the Appendix for a simple demonstration.
28Point estimates from least squares regressions are similar, but the subsampling routine described in Sec-

tion III does not converge for some subsamples in the least squares specification. This reflects the sensitivity
of least squares to outliers and the relatively small size of each subsample.
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relationships among the set {δr} in equation (6). Specifically, we assume the cumulative
elasticity can be modeled as an exponential function of lags and a linear function of leads:

βs :=
s∑

r=−∞

δr = (γ1 −
γ1
γ2
s · 1[s ≤ 0]) · 1[s ≥ γ2] + γ3(1− exp(γ4s)) · 1[s >= 0], (8)

where s is again the number of months since a price change. Thus, negative numbers in-
dicate the price change has not happened yet. According to equation (8), the elasticity
corresponding to an anticipated, contemporaneous price shock is equal to γ1, and the long-
run elasticity is equal to γ1 + γ3. The parameters γ2 and γ4 govern the speed of adjustment
before and after a price change. In addition to delivering more precise estimates, the para-
metric specification also allows us to calculate elasticities outside our data window. We
estimate equation (8) by selecting the parameters that minimize the mean absolute devia-
tion between the observed usage response and the response predicted by the model.

Equations (6) and (8) implicitly assume that consumers have perfect foresight. Fol-
lowing Anderson et al. (2013), we have also estimated the model using status quo (“no
change”) expectations. The results are similar to the ones we present below.

B Results

The results from the dynamic model are presented in Figure 6. The markers report dynamic
elasticities, as estimated by equations (6) and (7), for the four specifications described
earlier. Each marker represents the cumulative electricity usage change (in percent) in
response to an anticipated one-percent price change that begins in month 0 and persists.
The solid line corresponds to the parametric model specified by equation (8) and lines up
closely with the unrestricted estimates.29 Note that the period t = 0 in Figure 6 corresponds
to the date of the price change, but in Figures 4 and 5, period t = 0 corresponds to the date
of the referendum, which occurs four months earlier for the median community.

Overall, the estimates follow a similar pattern to the reduced-form results presented
in Section IV. Following the price change, the usage response grows over time, with an
implied elasticity of about −0.1 six months post-implementation and an elasticity of about
−0.2 eighteen months post-implementation. Thus, consumer dynamics play an important
role in the first two years after a price change. The dynamic model also estimates that
consumers begin to respond in advance of a price change, though the pre-price-change

29The point estimates for the parameters (γ̂1, γ̂2, γ̂3, γ̂4) are (−0.052, −6.034, −0.296, 0.036).
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Figure 6: Estimated Price Elasticities: Dynamic Model
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Notes: This figure reports non-parametric and parametric estimates of the dynamic elasticity curve. The
plotted points are derived from equation (6). Each set of points is estimated using a different set of 30 lags
and leads, beginning with the lead displayed in the legend. For example, the “12-Month Leads” specification
includes 12 leads and 18 lags. Each point displays the estimated elasticity as a function of the number of
months since a price change, calculated as

∑s
r=−L1

δ̂r, where s is the number of months since a price change
and L1 is the number of leads included in the specification. The solid line displays estimates derived from
the parametric model specified by equation (8). Six-month average elasticities for both the non-parametric
and parametric estimates are reported in Table 3.

elasticities are small, averaging −0.02 in the six months prior to a price change.
The first two columns of Table 3 summarize the non-parametric and parametric esti-

mates of the dynamic elasticity curve, respectively. The reported coefficients are the mean
of the point estimates in Figure 6 within each interval indicated by each row. Again, these
estimates correspond to the effect of a permanent, anticipated increase in price beginning at
time t = 0 on usage s months after. These estimates indicate an elasticity of approximately
−0.085 in months 1–6 and an elasticity of −0.21 in months 19–24.30

For comparison, we also provide analogous reduced-form estimates in column (3) of
Table 3. To create them, we replicate the reduced-form elasticity estimates presented in
Section IV, but re-index the estimates to the date of the price change, rather than the date
of the referendum.31 To provide the closest possible comparison for the dynamic model,

30Table A.8 in the Appendix shows that these results are not sensitive to the number of neighbors used.
31Because the price change prior to the implementation date is zero, we cannot estimate an elasticity for the

months prior to the policy change with the reduced-form model. Additionally, this reduced-form estimator
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Table 3: Estimates of the Dynamic Elasticity Curve

Period After Price Change Non-Parametric Parametric Reduced Form

1-6 Months Prior -0.023** -0.022*** N/A
(0.010) (0.006)

Contemporaneous -0.050*** -0.052*** -0.034**
(0.015) (0.010) (0.021)

1-6 Months -0.083*** -0.087*** -0.069***
(0.013) (0.012) (0.011)

7-12 Months -0.145*** -0.138*** -0.122***
(0.018) (0.017) (0.017)

13-18 Months -0.168*** -0.179*** -0.218***
(0.022) (0.023) (0.035)

19-24 Months -0.209*** -0.212*** -0.260***
(0.031) (0.028) (0.038)

Significance levels: * 10 percent, ** 5 percent, *** 1 percent. The dynamic estimates are constructed
from a regression of log usage changes on leads and lags of log price changes. The non-parametric
elasticities are calculated according to equation (7) and have been averaged across the four different
specifications of equation (6) discussed in the main text. The parametric elasticities are calculated
according to equation (8). The reported estimates represent the average cumulative effect of a per-
manent one-percent price change on log usage over the six-month interval shown in the first column.
The reduced-form estimates are constructed by regressing log usage changes on log price changes
in the same period. These reduced-form estimates differ from those presented in Table 2 because the
reference period here is time since price change, rather than time since referendum. Standard errors,
given in parentheses, and statistical significance levels are constructed via subsampling.

we estimate this specification using median (minimum absolute deviation) regressions. The
resulting reduced-form estimates are similar to those reported in Table 2 but shifted by the
number of elapsed months between the referendum and the price change.

The estimated elasticities in Table 3 grow steadily over time, though the dynamic model
estimates are somewhat smaller than the reduced-form estimates in later periods. Given that
municipal aggregation did not lead to a time-invariant price difference between aggrega-
tion and non-aggregation communities, it is not surprising that there are some differences
in these estimates. The decrease in ComEd prices occurring about 11 months after im-
plementation causes the reduced-form estimates to overstate the elasticity after this point,
as contemporaneous usage still partially reflects the earlier (larger) price difference. Nev-

does not account for anticipation, but this has little impact on the resulting estimates.
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Table 4: Long-Run Elasticity Forecasts from Dynamic Model

Period After Price Change Point Estimate

Year 3 -0.268***
[-0.358, -0.195]

Year 5 -0.315***
[-0.462, -0.222]

Year 10 -0.345***
[-0.616, -0.242]

Long Run -0.348***
[-1.007, -0.245]

Significance levels: * 10 percent, ** 5 percent, *** 1 percent.
These forecasts are an extrapolation based on the parameters es-
timated by equation (8). The reported coefficients represent the
cumulative effect of a permanent one-percent price change on
log usage. 95 percent confidence intervals, given in brackets, and
statistical significance levels are constructed via subsampling.

ertheless, the estimates are quite similar overall, which suggests that modeling municipal
aggregation as a permanent price shock is reasonable in our setting.

Although the primary benefit of the dynamic model is that it disentangles the effects of
contemporaneous versus lagged price changes on current usage, the estimated parameters
can also be used to project the usage response beyond the two-and-a-half-year post period
in our data. As a calibration exercise, we report the long-run projections arising from our
parametric model in Table 4. We estimate a three-year elasticity of −0.27 and a five-year
elasticity of −0.32. Both the ten-year and the long-run elasticity are close to −0.35. Thus,
over 90 percent of the long-run consumer response occurs within five years of the price
change, and nearly 100 percent occurs within ten years. These estimates imply that prices
from more than ten years ago have little (direct) impact on residential electricity consump-
tion today. These dynamics are similar to those found in Allcott and Rogers (2014), who
find that the consumption effects of a home energy report decay by 10–20 percent per year
after it is discontinued, implying that consumers fully adjust after 5–10 years.
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VI Discussion

The fact that the price elasticity of residential electricity demand grows significantly over
time has two important implications. First, price changes will have much larger effects
on consumption in the long run than in the short run. Second, any change to the market,
such as a tax or increased generation, will have a smaller effect on consumer prices in
the long run relative to the short run. Policymakers who do not anticipate these dynamics
will both underestimate the long-run effects of regulations that affect electricity prices and
overestimate the share of the long-run regulatory burden borne by consumers.

We demonstrate the quantitative magnitudes of these implications with a few simple
calculations. Because our model was estimated using Illinois data, our exercises employ
Illinois data on electricity consumption, prices, and carbon dioxide (CO2) emissions. The
exact data we use do not affect the primary implications of our analysis, as we focus on
relative comparisons (ratios) between the short- and longer-run elasticities.

According to the U.S. Energy Information Administration (2018), in 2016 Illinois gen-
erated 187,441,635 MWh of electricity at an average retail price of $93.8 per MWh. This
in turn produced 72,226 thousand metric tons of CO2. For simplicity, we assume that the
residential electricity market is perfectly competitive and that all generated electricity is
sold at the average retail price. Because our goal is to highlight the role of the demand
elasticity, we abstract away from supply-side issues such as changes in the composition
of generation. Finally, because there is little consensus on the magnitude of the supply
elasticity, εs, we perform all calculations under two different assumptions: εs = 0.5 (low
elasticity of supply) and εs = 5 (high elasticity of supply).

Our first exercise considers the implementation of a tax intended to reduce emissions.
Policymakers who wish to target a specific level of emissions must first predict how equi-
librium electricity consumption responds to changes in taxes. In perfectly competitive
markets, the fall in equilibrium quantity following a small tax increase depends on both the
demand and supply elasticities (Salanie, 2011):

∂Q

∂t
= − εsεd

εs + εd

Q

P
= − 1

1/εs + 1/εd

Q

P
,

where Q is quantity, t is a per-unit tax, P is price, and εs and εd are the absolute values of
supply and demand elasticities, respectively. It is clear from this expression that underes-
timating the demand elasticity will underestimate the demand response following a price
change. We demonstrate the significance of this point in Table 5. Employing our six-month
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Table 5: Implications of the Demand Elasticity for Carbon Taxes and Incidence

(1) (2) (3)
εD = −0.09 εD = −0.27 Ratio of
(1-6 Months) (19-24 Months) (2) to (1)

(a) Inelastic Supply (εS = 0.5)

Change in Quantity for a $1/MWh tax (MWh) -152,414 -350,353 2.30
Tax to Reduce Emissions by 1% ($/ton CO2) 31.92 13.88 0.44
Consumer Share of Tax Burden (%) 85 65 0.77

(b) Elastic Supply (εS = 5)

Change in Quantity for a $1/MWh tax (MWh) -176,668 -511,901 2.90
Tax to Reduce Emissions by 1% ($/ton CO2) 27.53 9.50 0.35
Consumer Share of Tax Burden (%) 98 95 0.97

This table presents calculations of the effects of an electricity tax on electricity output; the size of a carbon
dioxide (CO2) tax required to reduce electricity-related emissions by 1%; and the incidence of these policies.
Column (1) presents results employing the estimated short-run (6-month) elasticity from Table 2 (−0.09).
Column (2) presents results using the corresponding two-year elasticity (−0.27). Calculations are based on
2016 Illinois statistics obtained from U.S. Energy Information Administration (2018): 187,441,635 MWh of
electricity generated; 72,226 thousand metric tons of CO2 emitted; average retail price of $93.8 per MWh.
All calculations assume perfectly competitive markets.

estimated elasticity and assuming a supply elasticity of εs = 0.5, we calculate that elec-
tricity output falls by 152,000 MWh per dollar increase in tax. By contrast, employing our
two-year estimate results in an estimated decrease that is over twice as large, 350,000 MWh
per dollar. Panel (b) shows that this difference becomes even larger if we instead assume a
supply elasticity of εs = 5.

Similarly, our second exercise shows that employing smaller demand elasticity esti-
mates will reduce the predicted effectiveness of a carbon tax. Assuming that all emissions
reductions must come from reduced electricity generation, a demand elasticity of −0.09

implies that a 1 percent reduction in emissions would require a tax of $27.5–$31.9 per ton
of CO2, while a demand elasticity of −0.27 implies that a $9.5–$13.9 tax would be suffi-
cient.32 In other words, the two-year elasticity we estimate yields tax rates that are 56–65
percent smaller than our six-month elasticity would imply. It is worth noting that, because

32To calculate the required CO2 tax to obtain emissions reductions of α ∈ (0, 1), we calculate αQ

η ∂Q
∂t

, where

η = 72,226,000
187,441,635 = 0.385 is the Illinois emissions intensity. The corresponding carbon tax would be 3.67

times larger than the CO2 tax, as 3.67 tons of CO2 contain one ton of carbon. Because carbon emission rates
depend on an electricity generator’s type (coal, natural gas, wind, etc.), calculating the required carbon tax in
practice is more complicated. Nevertheless, the influence of the demand elasticity is similar.
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both the six-month and two-year estimated elasticities are quite inelastic, the taxes required
to reduce emissions through reducing the quantity of electricity consumed are large.

Finally, our third exercise considers the partial equilibrium incidence of a tax, which
also depends on the elasticity of demand (Salanie, 2011). In perfectly competitive markets,
the share of the overall burden borne by consumers is equal to εs

εs+εd
. We report the short-run

and longer-run incidence in Table 5.33 If we assume a supply elasticity of εs = 0.5, then we
estimate that consumers would bear 85 percent of the burden when the demand elasticity
is −0.09, but only 65 percent of the burden when the demand elasticity is −0.27. When
supply is elastic (εs = 5), however, the consumer share of the tax burden is 95 percent or
larger across our range of demand elasticity estimates.34

VII Conclusion

It is essential for electricity suppliers, market regulators, and policymakers to understand
how electricity consumption responds to price changes. For example, accurately predict-
ing the long-run effect of a carbon tax on electricity consumption (and any accompanying
emissions) requires a good estimate of the long-run price elasticity of demand. Few reliable
estimates of this important parameter exist because electricity price changes are often en-
dogenous, short-lived, small, or unnoticed. Our study provides the first quasi-experimental
estimate of the two-year price elasticity of demand for residential electricity, and we find
that it is more than double the short-run (six-month) elasticity, although it is still inelas-
tic. In addition, our long-run projections suggest that it takes ten years for consumers to
fully respond, which implies that consumer behavior may depend upon price changes that
occurred up to ten years ago.

There are several possible reasons why our estimated elasticity grows over time. It
takes time to change habits, such as turning off the lights or turning down the air condi-
tioning when away from home. Usage also depends on the energy efficiency of durables
such as dishwashers, dryers, and air conditioners, which are purchased infrequently and are

33Weyl and Fabinger (2013) extend the analysis of incidence to imperfectly competitive markets and show
that, while the incidence formula becomes more complicated, it is still a function of the demand elasticity.

34One concern that arises when discussing incidence in the electricity sector is that residential electricity
rates are often controlled by utility regulators. As of 2016, however, fifteen states had retail choice for
electricity supply (Morey and Kirsch, 2016). Some of these states, as well as others that do not allow retail
choice, impose profit constraints on incumbent suppliers (e.g., the zero-profit condition in Illinois). Thus, the
supply component of price is tightly linked to changes in the costs of electricity generation. In such cases,
the standard incidence framework remains relevant.

31



continuously replaced within a population. Some consumers may need time to learn that
the electricity price has changed, especially if the benefit of tracking price changes is small
relative to the cost of paying attention. Whatever the underlying mechanism, our results un-
derscore the importance of identifying settings that accurately capture longer-run responses
to price changes, as short-run data may cause the researcher to significantly underestimate
the long-run response.

Our results also matter for the organization of electricity markets. For example, there is
some debate as to whether to use a downward-sloping or vertical demand curve in forward
capacity auctions for the Midcontinent Independent System Operator (MISO) electricity
area (Cook, 2016a,b). As the relevant time period for these auctions spans multiple years,
our findings suggest that using a downward-sloping demand curve in this setting is appro-
priate.

Finally, we note that the natural experiment created by municipal aggregation decreased
electricity prices, whereas price-based climate policies would increase prices to reduce total
carbon emissions. It is therefore important to know whether price increases and decreases
have symmetric effects on demand. In addition, other energy policies such as a carbon tax
may be less salient or more salient to consumers than aggregation, which in turn may affect
the speed and magnitude of the consumer response. Future research along these dimensions
would be valuable.
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