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Abstract. We evaluate the distributional consequences of building energy codes 
for home characteristics, energy use, and home value. We exploit spatial variation 
in California’s code strictness created by building climate zones, combined with 
information on over 350,000 homes located within 3 kilometers of climate zone 
borders. Our key findings are that stricter codes create a non-trivial reduction in 
homes’ square footage and the number of bedrooms at the lower end of the 
income distribution. On a per-dwelling basis, we observe energy use reductions 
only in the second lowest income quintile, driven by decreases in square footage. 
Energy use per square foot actually increases in the bottom quintile. Home values 
of lower-income households fall, while those of high-income households rise, 
suggesting that building energy codes result in more undesirable distortions for 
lower-income households. 
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I. Introduction 

Building energy codes that set minimum efficiency requirements for new construction are 

widely employed throughout the United States. Typically, the imposition of a building code is 

motivated by either an externality (e.g., an individual will not take into account their neighbor’s 

house catching fire when choosing the level of fire safety), informational barriers (e.g., it is 

difficult to observe how sturdy a building is), or other market failures such as inattention on 

behalf of home buyers. Energy building codes have in part been justified by the significant 

environmental externalities associated with energy use. However, no state currently taxes 

building energy use, which is a more cost-effective way to reduce energy consumption in the 

absence of informational or landlord-tenant market failures.  

The adoption of standards such as building energy codes may also be motivated by 

distributional concerns (Ito and Sallee 2018). That is, while building energy codes are less cost-

effective, they may achieve a more preferable distributional outcome than would be feasible with 

energy taxes. This could be the case if the value of building codes, net of their costs, represented 

a larger fraction of household income in poor areas than in wealthy areas. Codes could cause 

even higher absolute levels of savings in low-income areas if standards are not binding for 

homes occupied by wealthier individuals, although such savings may not be welfare-improving 

if they are costly. These conjectures have not been tested empirically, and furthermore there is 

even debate about the extent to which building energy codes reduce energy use at all (Jacobsen 

and Kotchen 2013; Levinson 2016; Kotchen 2017; Novan et al. 2017). 

 We adopt a novel approach to studying both the effectiveness and distributional 

properties of building energy standards by exploiting spatial and temporal variation in the 

stringency of California’s codes. California has 16 distinct climate zones, and climate zones 

whose “typical meteorological year” is more extreme generally face more stringent energy code 

requirements. Thus, homes that are built in the same geographic area and at the same time but on 

opposite sides of a climate zone border will face different levels of code stringency. Moreover, 

the introduction of climate zones in 1982 provides a second source of variation that allows us 

include granular spatial controls, eliminating time-invariant characteristics that might differ 

across the boundary.  
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We obtain account-level electricity and natural gas billing data for the years 2009-2015 

from four California utilities, which together serve the vast majority of homes in the state, and 

combine these with data on home characteristics, occupant characteristics, and home values from 

ReferenceUSA (RefUSA). We identify about 354,000 homes that are within 3 kilometers of a 

climate zone border and use them to study the impact of building energy codes on home 

characteristics, energy use, and home values. We adopt a difference-in-differences approach, 

comparing cross-border differences among homes built prior to the introduction of energy 

building codes (1947-1977) to differences among homes built after climate zones were 

introduced (1982-2006).3 Our identification assumption is that, absent building energy code 

climate zones, differences in energy use for post-1981 homes on either size of a climate zone 

border would have been statistically indistinguishable from differences in energy use for pre-

1977 homes. We are able to provide some empirical evidence for this assumption by examining 

trends in energy use for pre-1977 homes on different sides of post-1981 climate zone borders. 

Importantly, our approach allows us to flexibly control for changes in building practices over 

time with vintage fixed effects, something previous studies have been unable to do. To elucidate 

the distributional effects of building energy codes, we estimate how the effect of building codes 

on energy use and housing prices varies by income quintile. 

We find that stricter energy codes reduce the square footage and the number of bedrooms 

in homes occupied by households in the bottom two income quintiles by 4-6%, a channel 

through which the codes might reduce total energy consumption. The top three quintiles also 

show a small (0.6-1.6%) reduction in the number of bedrooms and the third and fourth quintile 

show a similarly small decline in square footage (0.6-0.7%). These results suggest that the codes 

create more undesirable distortions to attributes in low-income homes. To our knowledge, we are 

the first to estimate how builders respond to building energy codes along the dimension of home 

attributes. Our finding that building codes alter home characteristics also highlights the difficulty 

of only using intertemporal variation for identification in this and similar settings, especially over 

longer time periods. If there are secular trends in building characteristics and a possibility that 

building energy codes affect these characteristics, both of which are very likely, then it is 

impossible to accurately estimate the effects of building codes, either net of changes in 

                                                            
3 Between 1977 and 1982, building requirements varied slightly according to local heating and cooling degree days. 
However, the modern climate zones did not yet exist. 
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characteristics or not. If the researcher controls for home characteristics, the estimated effects 

will not represent the causal effect of building codes because the codes affect attributes;4 and if 

the researcher does not control for home characteristics, secular trends will obfuscate the true 

effects of building codes. Thus, cross-sectional variation is essential for proper identification. 

When we consider energy usage, we find that, for the average border in our sample, 

building energy codes do not significantly (in a statistical sense) reduce the total or per-square 

foot natural gas consumption. However, electricity usage falls by 1% on a per-house basis and by 

0.6% on a per-square foot basis. These averages are an order of magnitude smaller than a back-

of-the-envelope engineering calculation of how cross-border differences should translate into 

energy use reductions. While our data do not allow us to test for mechanisms that may be behind 

these shortfalls, the results are consistent with recent work showing that engineering estimates 

sometimes overstate real-world gains, for example because the engineering estimates are biased, 

work is not carried out properly, or because individual behavior does not align with engineering 

assumptions (e.g., Davis et al. 2014; Hanna et al. 2016; Allcott and Greenstone 2017; Fowlie et 

al. 2018). The latter could happen if households respond to energy efficiency improvements by 

increasing their energy use – the so-called “rebound effect” – or take other actions that offset the 

energy reductions that would have otherwise materialized. 

The average treatment effect masks substantial heterogeneity across income groups. 

Specifically, we find that households in the second quintile of the income distribution experience 

the largest decreases in total energy use (about 4%). Our estimates for the bottom quintile are 

very imprecise, and we cannot rule out that they experience a comparable or even slightly larger 

decline in total energy use. For the other three quintiles, however, we can rule out energy 

reductions of 1.5% or more with 95% confidence. Considering gas and electricity separately, we 

find that the second income quintile experiences similar decreases in both (4.5-4.7%), with 

estimates for the bottom quintile again being statistically imprecise. For the top three quintiles, 

we see significant reductions in electricity use of 1.1-1.2%, but no meaningful changes in natural 

gas use. On a per-square-foot basis, we only see (small) reductions in electricity use in the top 

income quintile, and no significant decline in natural gas or total energy use anywhere in the 

income distribution. Energy use per square foot in the bottom quintile actually increases, 
                                                            
4 Attributes are a “bad control” in the sense of Angrist and Pischke (2009). Because codes affect attributes, holding 
the attributes constant in a regression equation will not allow the researcher to capture the causal effect of variation 
in code stringency. Angrist and Pischke explain that this bias could be either positive or negative.  
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possibly because some energy demand (e.g., appliances) is independent of square footage, and 

square footage in these homes falls. Although our empirical strategy uses different variation in 

building energy codes than the existing literature, our conclusion about their effects on energy 

use is qualitatively similar: building energy codes lead to some energy use reductions, but ex post 

savings fall substantially short of ex ante predictions.  

Using the same methodology, we also estimate the degree to which the energy code 

differences are capitalized into housing prices. Because of our difference-in-differences 

approach, these estimates will be purged of price differences due to construction costs, land 

scarcity, and other local factors that could affect the value of an existing home. Thus, any 

estimated differences should be driven by differences in the attributes of homes subject to stricter 

building energy codes, including their energy efficiency. We find that housing prices increase by 

about 2%, on average and on a per-square-foot basis. The increases are concentrated in the top 

two income quintiles, and are too large to be explained by the net present value of measured 

electricity savings, suggesting that building energy codes also lead to changes in unobservable 

(to us) characteristics that higher-income households value. By contrast, housing prices in the 

bottom two quintiles fall by 8-12%; about half of this effect can be explained by the decline in 

square footage. Because the per-square-foot price changes are not accompanied by per-square-

foot changes in energy use, our interpretation is that there are also changes in home 

characteristics other than square footage, such as the number of bedrooms and other attributes 

that are unobservable to us.  

Our paper makes contributions along several dimensions. First, our identification strategy 

is unique in this literature. Part of the difficulty in evaluating the effectiveness of building energy 

codes is that most of the existing empirical studies focus on changes in building codes over time 

(Jacobsen and Kotchen 2013; Levinson 2016; Kotchen 2017). As such, they lack a comparison 

group of homes that were built at same time but do not face the same building energy code. One 

exception is Aroonruengsawat et al. (2012), who use state-level panel data from the US and find 

that building energy codes reduce electricity use by as much as 5%. Because their estimation 

strategy is based largely on differential timing in the introduction of energy codes across states, 

the accuracy of their results depends crucially on their ability to control for potential 

confounding factors, such as heterogeneous trends and non-linear relationships between weather 

and electricity use. By contrast, our estimates rely on a much weaker identification assumption: 
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we only require parallel trends near climate zone borders. In some cases, these borders even 

bisect cities, lending more credence to our identification assumption. We are also able to 

consider natural gas use, something Aroonruengsawat et al. (2012) do not observe. Unlike any of 

the existing studies, we also examine capitalization, distributional consequences, and whether 

building codes affect home characteristics, such as square footage. Our findings that home 

characteristics respond to building energy codes also highlight the importance of using cross-

sectional variation for identification. 

We also contribute to the growing literature on the distributional effects of energy 

policy.5 To date, this research has focused on carbon taxes, gasoline taxes, and fuel economy 

standards, and there is virtually no research on the distributional consequences of building 

energy codes. However, building energy codes are a very pervasive type of energy policy; only 

eight relatively sparsely populated states do not have statewide energy codes for residential 

buildings (DOE 2017). Thus, their distributional consequences are worth studying. We show that 

lower-income households suffer the largest distortions to square footage and the number of 

bedrooms and a decline in home value, while higher-income households experience very small 

distortions in these characteristics and an overall increase in home value. These findings suggest 

that builders use different approaches to comply with building energy codes in different parts of 

the income distribution. Ito and Sallee (2018) show that standards which distort attributes may 

improve efficiency under some conditions, but that similar benefits can be obtained with a 

compliance trading scheme that does not result in attribute distortion. They speculate that 

attribute-based regulation may be ultimately motivated by distributional considerations. 

However, while the lower-income households in our sample obtain the largest monetary savings 

from building energy codes, this reduction is brought about by builders reducing square footage. 

Absent other market failures, such as asymmetric information, building energy codes are thus 

unlikely to disproportionately benefit lower-income homeowners. 

The rest of the paper is organized as follows. In Section II, we provide background on 

energy building codes in California and discuss the ways in which energy building codes might 

affect building attributes and energy use. In Section III, we outline our estimation strategy and 

the data we use. Section IV presents our results, and Section V discusses and concludes. 

                                                            
5 e.g., West 2004; West and Williams 2004; Hassett et al. 2009; Jacobsen 2013; Williams et al. 2014; Borenstein and 
Davis 2016. See Bento 2013 for a review. 
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II. Background  

A. California building energy codes 

California was one of many states to implement a statewide energy efficiency code in the 

1970s (Aroonruengsawat et al. 2012). It officially adopted such a code in 1978, although some 

building energy standards that were adopted in the code began to be enforced in late December 

of 1976 (CEC 1978). Because we focus on energy use in single-family homes, we restrict the 

discussion below only to requirements that apply to such dwellings. 

In 1982, California introduced 16 “climate zones” (see Figure 1) and specified slightly 

different energy efficiency requirements for each one.6 The stringency of the code in each 

climate zone is determined by the zone’s “typical meteorological year”. Originally, these were 

developed from weather data in a “representative city” in each climate zone.7 In later years, other 

weather stations were added to more accurately capture the typical temperature distribution faced 

by population centers in each climate zone. In general, zones with more moderate climates face 

fewer restrictions than zones with more extreme climates.  

Builders in each climate zone can comply with California’s building energy codes in one 

of two ways. First, they can utilize the so-called “performance method” by demonstrating that 

the proposed building is expected to use less energy than the maximum allowed for a “standard” 

home of the same size in that climate zone. Because the performance method offers a lot of 

flexibility, it is used by the vast majority of new home builders to demonstrate compliance.8 

Alternatively, builders can adopt a prescriptive set of requirements for how the building must be 

built (called “alternative packages”). Although this second method is not frequently used, the 

maximum allowed energy use under the performance method is determined by the projected 
                                                            
6 In 1995, the California Energy Commission conducted a review of the climate zones and changed the classification 
of several cities (California Energy Commission 1995). This re-classification affects relatively few homes in our 
sample and we omit them from the analysis. In principle, these changes create the perfect natural experiment 
because the California Energy Commission points out that the reclassification was due to mistakes in the original 
boundaries. Unfortunately there are not enough homes affected by the change to detect an effect on energy usage, so 
we omit these homes from our sample rather than try to exploit the change for identification.  
7 See http://www.energy.ca.gov/maps/renewable/building_climate_zones.html. We further discuss the typical 
meteorological year data in Section III. 
8 We contacted plans examiners in three jurisdictions across the state of California (Ryan Pursley from the City of 
Concord Building Office, Joe Espinsoa from the Palo Alto Building Office, and Leslie Edwards from the Kern 
County Building Office) and Michael Kunz from Title 24 Express, a company that helps builders certify energy 
building code compliance. All of them confirmed that new homes almost exclusively utilize the performance 
method for compliance. Moreover, several building energy code documents themselves state that the majority of 
builders use the performance method. 

http://www.energy.ca.gov/maps/renewable/building_climate_zones.html
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energy usage of a home that meets the prescriptive standards. Therefore, the alternative packages 

determine the building code strictness, so we briefly discuss them first. 

Alternative packages offer builders several possible combinations of minimum 

requirements for key energy-relevant home characteristics, including (a) the amount of ceiling, 

wall, and other types of insulation, (b) glazing (i.e., windows and glass doors) energy efficiency, 

(c) the share of a home’s wall area that can consist of glazing, and (d) in some climate zones, 

shading minimums. The 1982 building codes contained three such packages for each climate 

zone (A, B, and C); starting in 1983, there have been five (A-E). Alternative packages thus offer 

much less choice and flexibility than the performance method, which allows builders to employ a 

lot more possible combinations of energy efficiency characteristics.  

The performance method has evolved slightly since it was first introduced. In 1982-1983, 

the maximum allowed energy use was a simple per-square-foot “energy budget”, expressed in 

thousands of BTUs per square foot of conditioned space per year for space conditioning and 

thousands of BTUs per dwelling unit per year for water heating. There were separate energy 

budgets for heating and cooling and for each climate zone (see Online Appendix Table A1). 

Whether or not a particular building met the required energy budget was determined by software 

that projects energy use as a function of building characteristics and location. 

In later building code vintages, simulations continued to be the basis for determining a 

proposed home’s energy use for compliance using the performance method. However, the per-

square-foot energy budget ceased to be constant, but instead became determined by a “standard 

design”. The standard design is a home that has the same square footage as the proposed home 

and has the prescriptive requirements of a particular “alternative package”. For example, in 

building energy code vintages 1995 and later, the characteristics of alternative package D are 

used to establish the performance standards for each climate zone. Thus, if package D in one 

climate zone contains characteristics that translate into lower energy use than package D in 

another climate zone, then a builder will have to utilize more energy-efficiency measures in the 

former compared to the latter, all else equal.   

Building energy codes similar to California’s can be thought of as changing the marginal 

costs of different attributes (see Section A in the Online Appendix for a simple conceptual 

framework). For example, a larger house may become costlier to build in the presence of stricter 

building energy codes, as it requires more additional insulation material than a smaller house. 
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Alternatively, some attributes may become implicitly cheaper if they relax an energy use 

constraint imposed by building energy codes. Identifying and describing all the assumptions of 

the energy modeling software that may penalize or reward certain building attributes is beyond 

the scope of this paper. The most obvious incentive to distort attributes is the one we allude to 

above: building codes increase the marginal cost of each square foot by requiring better 

insulation. Of course, under the performance standard, builders are not necessarily required to 

install the insulation levels described in the prescriptive packages. But because the reference 

home is assumed to have that level of insulation, producing equivalent energy reductions through 

other means will on average be more difficult for a larger house.  

In California, there is an additional implicit size penalty because reference homes used in 

compliance calculations have square footprints and windows that are evenly distributed across all 

four walls. This modeling assumption makes it increasingly difficult for large homes to meet the 

standards, because energy use due to heat loss is proportional to surface area, not floor area, and 

holding floor area fixed, more rectangular homes will have a larger surface area.9 Thus, for 

homes without square footprints, the difficulty of meeting the performance standards increases 

with home size.  

Because the stringency of California’s code thus depends on home size, California’s building 

energy code is an example of “attributed-based” regulation, where requirements for one 

characteristic (e.g., energy efficiency) depend on the level of a “secondary attribute” (e.g., home 

size). Ito and Sallee (2018) develop and analyze a general theoretical framework of such 

regulation. They show that attribute basing generally leads to a distortion in the attribute on 

which the policy is based. Such a distortion can be welfare-improving (relative to a non-

attribute-based standard) if it helps equalize the marginal costs of compliance across goods or 

achieves distributional outcomes that would otherwise be unattainable. However, attribute-

basing could also reduce the effectiveness of a standard if it encourages larger homes that use 

more energy.  

                                                            
9 To see this, let SA(Square, A) be the wall surface area of a home with a square footprint and square footage A. 
Define SA(Rectangle, A, c) to be the wall surface area of a home with a rectangular footprint, with square footage 
A, and whose length is c times its width. Note that 𝑆𝑆𝑆𝑆(𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆,𝑆𝑆) 𝑆𝑆𝑆𝑆(𝑅𝑅𝑆𝑆𝑅𝑅𝑅𝑅𝑆𝑆𝑅𝑅𝑅𝑅𝑅𝑅𝑆𝑆,𝑆𝑆) =   4√𝑅𝑅 (2 + 2𝑅𝑅)�⁄  ∈ (0,1]. 
The limit of this fraction is 0 as c approaches 0 or infinity, and the ratio reaches its maximum value of 1 when c = 1, 
i.e. the rectangular home is actually a square. Thus, non-square homes will always be penalized in this dimension of 
the performance standard. To the extent that (𝑆𝑆, 𝑅𝑅)  >  0 , larger homes will be penalized more than smaller homes. 
The assumption that 𝑅𝑅𝑐𝑐𝑆𝑆𝑆𝑆(𝑆𝑆, 𝑅𝑅) > 0 would be true under many circumstances, including the desire to have natural 
window light available in all rooms of the house. 
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To apply the Ito and Sallee intuition to building codes, notice that the features of California’s 

code discussed above implicitly penalize size, which leads to a further reduction in energy use. 

The opposite might be true depending on the details of any particular code. For example, if larger 

homes have lower compliance costs on a per square-foot basis because they can take advantage 

of economies of scale in making fixed investments like efficient HVAC systems, then building 

energy codes may create incentives to build larger homes. Overall, California’s building energy 

codes are similar in structure to that of other states, 49 of which use some version of the 

International Energy Conservation Code (IECC), statewide or locally (ICC 2017).10 Like 

California, the IECC also has a set of prescriptive standards that builders can choose to follow 

and a performance standard whereby builders can use software to demonstrate that the proposed 

home is expected to use less energy than a standard design under the prevailing environmental 

conditions. Thus, most of our conclusions about the incentives created by building energy codes 

are also applicable outside of California. 

B. Building energy code differences across climate zones 

Our identifying variation comes from the fact that the stringency of California’s code 

depends on a home’s climate zone. Therefore, prescriptive standards (and consequently the 

maximum energy consumption set by the performance standard) vary across space. All else 

equal, the amount of heat a building gains or loses depends on the difference between indoor and 

outdoor temperatures. Thus, insulation and other energy efficiency measures matter more in 

more extreme climates, and alternative packages in more extreme climates – as measured by 

each zone’s typical temperatures – have stricter requirements.  

Unfortunately, comparison of climates of neighboring zones is not always straightforward, as 

one zone may have more heating degree days (defined as the annual sum of degrees under 65F) 

while the other has more cooling degree days (defined as the annual sum of degrees over 65F). 

This leads to cases in which one side of a border has more stringent insulation requirements but 

the other side requires better window shading, for example. We thus adopt a statistical approach, 

asking how neighboring zones’ building code strictness is related to their archetypal climate 

differences on average. In Online Appendix Section B and Online Appendix Table A2, we 

                                                            
10 See U.S. Department of Energy’s website (https://www.energycodes.gov/adoption/state-code-adoption-tracking-
analysis) for a list of states’ current energy building codes. 

https://www.energycodes.gov/adoption/state-code-adoption-tracking-analysis
https://www.energycodes.gov/adoption/state-code-adoption-tracking-analysis
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demonstrate that differences in bordering zones’ typical meteorological year temperatures are 

strongly related to differences in their building code strictness, as measured by the prescriptive 

packages. That is, larger climate differences between neighboring zones, as measured by heating 

and cooling degree days, are associated with stricter building requirements imposed on the zone 

with the more extreme climate. We also perform a back-of-the-envelope calculation and 

demonstrate that a home with the more energy-efficient insulation characteristics (as described 

by the prescriptive packages) will use about 12-15% less energy than the less energy-efficient 

home, not counting appliances. Because the performance packages are based on the prescriptive 

packages, similar conclusions should apply to the former. Thus, the cross-border differences in 

building code requirements that we identify are non-trivial. 

The extent to which building energy codes affect energy consumption across climate zones 

also depends on how binding they are, i.e., how different actual homes are from homes that 

would have been built in absence of such codes, in terms of insulation, HVAC efficiency, and so 

on. This counterfactual is not something we can observe directly, but the less binding building 

energy codes are, the lower the observed difference in energy use across climate zone borders 

will be. Thus, our estimates of building energy codes’ effects on energy use is partly a test of 

how binding such codes are. 

III. Empirical strategy 

A. Regression approach 
It may seem natural to use neighboring zones’ differences in prescriptive standards to see 

how building code differences translate into differences in energy use. However, prescriptive 

standards are multidimensional, and it is not straightforward to combine their features into a 

single “strictness” variable. Instead of adopting an ad hoc formula, we use neighboring zones’ 

archetypal climate differences as independent variables that proxy for and are strongly correlated 

with building code strictness. It is important to remember that these climate differences are those 

of zones’ representative cities, not differences in climates just across the border. Climate zone 

boundaries were drawn to capture areas whose climates are similar to a representative city in 

each zone.11 Although in some cases boundaries follow mountain ridges or valley streams, in 

                                                            
11 See http://www.energy.ca.gov/maps/renewable/building_climate_zones.html for a list of these cities. Since 2013, 
climate zones have been enforced at the zip code level and in many cases do not cross city boundaries. 

http://www.energy.ca.gov/maps/renewable/building_climate_zones.html
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general the locations of the borders were determined for administrative convenience rather than 

in response to abrupt changes in topology. Thus, climates around these borders should be similar. 

We are unable to empirically verify this similarity using weather data because the number of 

weather stations that are sufficiently close to climate zone borders and to each other is too 

small.12 However, in Online Appendix Figure A1, we show that the per-square-foot energy 

consumption of older (1947-1977) homes on different sides of climate zone borders is 

statistically indistinguishable across different calendar months, relative to January, strongly 

suggesting that the climate is very similar across the borders in our sample. 

It is possible, however, that there are important differences in neighborhood, 

demographic, and other characteristics that change discretely at zip code or city boundaries, 

which often – but not always – coincide with climate zone borders. To control for any remaining 

time-invariant dissimilarities, including any small differences in climate, we adopt a difference-

in-differences approach rather than simply comparing post-1982 homes on different sides of a 

climate zone border.13 Specifically, we compare cross-border differences between homes built in 

1947-1977 to cross-border differences between homes built in 1982-2006 by estimating the 

following equation:  

ln�𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖� = 𝛽𝛽1𝑃𝑃𝑐𝑐𝑃𝑃𝑅𝑅𝑖𝑖 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 + 𝛽𝛽2𝑃𝑃𝑐𝑐𝑃𝑃𝑅𝑅𝑖𝑖 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖                           (1) 

+𝛽𝛽3𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 + 𝛽𝛽4𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 + 𝛼𝛼𝑏𝑏𝑏𝑏 + 𝛼𝛼𝑏𝑏𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑧𝑧 + 𝑳𝑳𝒊𝒊′𝜶𝜶𝒃𝒃 + 𝜀𝜀𝑖𝑖 ,                    

where 𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖 is the electricity use, natural gas use, or total energy use in dwelling 𝐷𝐷, month 𝑚𝑚, and 

year 𝑦𝑦. The variable 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 is the difference in cooling degree days between the typical 

meteorological year in the climate zone of dwelling 𝐷𝐷 and that of the nearest climate zone. 

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 is the corresponding difference in heating degree days. The variable 𝑃𝑃𝑐𝑐𝑃𝑃𝑅𝑅𝑖𝑖 is an 
                                                            
12 Specifically, of 1,105 weather stations operating in California at some point between 1950 and 2016, only 47 are 
located (a) within 5 kilometers of a climate zone border and (b) within 5 kilometers of another weather station. 
However, for 28 of these stations the nearby station is not on the other side of the border, leaving us with only 19 
qualifying stations.   
13 Alternatively, one could use the post-1982 homes and the spatial variation in code stringency induced by the 
climate zones. This would require climate zone boundaries to be unrelated to any unobserved factors that also 
influence energy consumption, home attributes, or occupant preferences. While it appears that some climate zone 
borders are determined arbitrarily by freeways or arbitrary jurisdictional boundaries, we have tested for smoothness 
in demographics and home attributes in neighboring climate zones prior to the introduction of the codes and 
determined that only a small number of borders appear to display pre-code continuity in the distribution of these 
variables. Thus, we prefer our weaker identification assumption that permits us to use a larger, more representative 
sample of California households and provides results that are more likely to be externally valid that a regression-
discontinuity type analysis of a small number of borders.  
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indicator for the dwelling being built in 1982 or later. We control for the fact that there may be a 

secular trend in the energy efficiency of new homes with vintage-by-border (year-built-by-

border) fixed effects, 𝛼𝛼𝑏𝑏𝑏𝑏. To control for seasonality common to newer and older homes in a 

particular area, we include border-by-month-of-sample fixed effects, 𝛼𝛼𝑏𝑏𝑖𝑖𝑖𝑖. Finally, we also 

include zip code and border-specific linear latitude and longitude controls (𝑳𝑳𝒊𝒊′𝜶𝜶𝒃𝒃). Standard 

errors are two-way clustered by dwelling and by month-of-sample. We also estimate the effects 

of building energy codes on time-invariant home characteristics (square footage, number of 

bedrooms, price, and price per square foot). In these specifications, we omit the border-by-

month-of-sample fixed effects and use robust standard errors, as we only have one observation 

per home.  

To simplify interpretation, we report linear combinations of 𝛽𝛽1 and 𝛽𝛽2 at the average 

cooling and heating degree day difference for treated homes. To calculate the difference in 

degree days at this “average” border, we compute the weighted mean of heating and cooling 

degree day differences, using zones that have more cooling degree days than their neighbor(s) as 

the reference.14 We weight by the number of “treated” homes built in or after 1982, when climate 

zones are in place. The average difference in heating degree days is -53.5, and the average 

difference in cooling degree days is 990.9. This approach is not the only reasonable way of 

combining the coefficients, but it has the advantage of capturing any correlation between heating 

and cooling degree-day differences as well as the distribution of homes in our sample.  

To estimate heterogeneity in the impact of building energy codes by income, we allow 𝛽𝛽1 

and 𝛽𝛽2 to vary by the household’s estimated income quintile: 

ln (𝑌𝑌𝑖𝑖𝑖𝑖𝑖𝑖) = �𝛽𝛽𝑞𝑞1(𝑃𝑃𝑐𝑐𝑃𝑃𝑅𝑅𝑖𝑖 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖

5

𝑞𝑞=1

∗ 1[𝑄𝑄𝑄𝑄𝑅𝑅𝑅𝑅𝑖𝑖 = 𝑆𝑆])                        (2) 

+�𝛽𝛽𝑞𝑞2(𝑃𝑃𝑐𝑐𝑃𝑃𝑅𝑅𝑖𝑖 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖

5

𝑞𝑞=1

∗ 1[𝑄𝑄𝑄𝑄𝑅𝑅𝑅𝑅𝑖𝑖 = 𝑆𝑆])     

+ 𝛽𝛽3𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 + 𝛽𝛽4𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 
 

    +𝛼𝛼𝑞𝑞𝑏𝑏 + 𝛼𝛼𝑏𝑏𝑏𝑏 + 𝛼𝛼𝑏𝑏𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑧𝑧 + 𝑳𝑳𝒊𝒊′𝜶𝜶𝒃𝒃 + 𝜀𝜀𝑖𝑖 ,                                               

                                                            
14 If we averaged without a reference point, the average would primarily be driven by differences in the number of 
homes on either side of the border. This is because climate differences are symmetric across the zone border: if 
homes on one side have 𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = 𝑋𝑋, the homes on the other side mechanically have 𝑑𝑑𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 = −𝑋𝑋. 
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where 1[𝑄𝑄𝑄𝑄𝑅𝑅𝑅𝑅𝑖𝑖 = 𝑆𝑆] is an indicator equal to 1 if household 𝐷𝐷’s estimated income quintile is 𝑆𝑆. 

Quintiles are defined using the 2010 American Community Survey microdata for California. In 

addition to the controls in equation (1), we add income-quintile-by-border fixed effects (𝛼𝛼𝑞𝑞𝑏𝑏), 

although our results are very similar if we only retain the original controls. We have also 

replicated our estimation with income deciles instead of income quintiles, concluding that there 

is no meaningful advantage to further subdividing income groups in this way.  

Our identifying assumption is that, conditional on the fixed effects above, differences 

between cross-border homes that are not driven by energy building codes are on average the 

same for pre-1977 and post-1981 homes. Because we are able to difference out any 

neighborhood amenities and other time-invariant factors with our difference-in-differences 

specification, the main threat to our identification strategy is systematically different 

development that occurs on either side of the border and that is unrelated to building energy 

codes. For example, if new development on one side of the border consists of larger or more 

expensive homes and new development on the other side of the border is smaller or lower-

income, we would attribute differences in energy consumption and home attributes to the 

building codes when in fact these differences are due to differential location-specific trends. We 

assess whether such a situation is likely in Section IV. 

B. Data and estimation sample 

Home characteristics, home prices, and occupant demographics. We obtain housing 

characteristics data from ReferenceUSA (RefUSA). The dataset contains detailed characteristics 

for over 6 million single-family homes, including the exact premise address, latitude/longitude 

coordinates, when the home was built, its square footage and number of bedrooms, and the 

estimated home value (based on assessor data).  

RefUSA also provides an estimate of the socioeconomic characteristics of each 

dwelling’s occupants. The data include basic demographic characteristics, such as the age of the 

head of the household, whether the head of the household is married, and the estimated number 

of children residing in the dwelling. Importantly, RefUSA also contains a measure of the 

household’s income, as inferred from various sources, including census block characteristics, 
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credit card purchases, magazine subscriptions, and other data that can be linked to a mailing 

address.15  

Using the latitude and longitude provided by RefUSA, we calculate each home’s own 

climate zone and its distance to the nearest climate zone. We then restrict the sample to single-

family homes that are within 3 kilometers of a climate zone border. Because we are interested in 

considering total energy use as well as energy use per square foot, we eliminate homes for which 

we do not have square footage information. We also omit homes located in cities whose climate 

zone changed in 1995. 

To maximize the comparability of the treated and control group, we exclude homes built 

prior to 1947 or after 2006, as there is evidence that new homes use less energy in the first few 

years of their existence than in the longer run (Levinson 2016; Kotchen 2017). For our main 

regressions, we also drop homes built in 1977-1981. While there was some variation in building 

requirements by heating and cooling degree days between 1977 and 1981, most of the variation 

was at the city level and did not correspond to climate zone boundaries. 

Energy use. We obtain monthly premise-level electricity and natural gas usage data from four 

major California utilities: San Diego Gas & Electric (SDG&E), Pacific Gas and Electric 

(PG&E), Southern California Edison (SCE), and Southern California Gas (SCG). Together, they 

serve almost all of California, with the exception of the very northern part of the state, the 

Sacramento area, and a few cities that have their own electric and gas utilities (see Figure 2). 

Thus, every climate zone border has the possibility of being represented in our sample although 

in practice some borders do not have any homes located nearby.  

Our energy usage data span the time period of January 2009 through July 2015, allowing 

us to obtain a fairly precise measure of each premise’s expected electricity and natural gas usage. 

Electricity usage is measured in kilowatt-hours (kWh) and natural gas usage is measured in 

therms. A kilowatt-hour is equivalent to about 3,400 British Thermal Units (BTUs), and a therm 

is equal to 100,000 BTUs. To gauge the change in total energy usage, we convert both therms 

and kilowatt-hours to thousands of BTUs and add them together.  

We use the address provided by the utility to match each home in the 3-kilometer 

RefUSA sample described above to its energy use. To minimize false matches, which could 

                                                            
15 The exact algorithm is proprietary. 
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introduce measurement error in our measure of building code strictness, we only retain cases 

where addresses match perfectly (including the street number, street name, city, and zip code) or 

where the only difference in the addresses is an abbreviated street suffix (e.g., “Ave” instead of 

“Avenue”, “Rd” instead of “Road”, etc.).16 We then drop a few homes that match to more than 

one utility providing the same type of energy. To maintain consistency across specifications, we 

restrict our sample to homes where we observe both electricity and natural gas usage. Using the 

most recent RefUSA record from the years 2006-2012, we are able to obtain income data for 

about 80 percent of the border homes for which we have energy use. Our final sample contains 

353,597 single-family homes built between 1947 and 2006 that are located with 3 kilometers of a 

climate zone border.  

Figure 3 shows the geographic locations of these homes, including larger maps of three 

metropolitan areas where we have the largest density of border homes: San Francisco (28,592 

homes), Los Angeles (184,140 homes), and San Diego (46,652 homes). These homes represent 

almost three quarters of our sample. Homes built before modern climate zones were established 

are in light gray, while homes built after are in dark gray (in case of overlap, light gray is 

superimposed on dark gray). Black lines correspond to climate zone boundaries. In many places 

there is significant geographic overlap between older and newer homes (although this is 

sometimes difficult to see visually due to the high home density and overlaps of new and old 

homes) and good balance in homes on different sides of the boundary. The areas where there are 

few or no older/newer homes or few/no homes just on the opposite side of the boundary 

demonstrate the necessity of the geographic controls in equation (1) for proper inference. In 

Online Appendix Figure A2, we show the spatial distribution of incomes in our sample. 

Although our sample is quite rich on average, and there are some visible clusters of high-income 

homes, each of the three major metropolitan areas and most climate zone borders have both low- 

and high-income households.  

To increase the precision of our estimates, we would like to eliminate variation in energy 

use that is due to seasonal patterns in a particular area. Including geographically-varying 

calendar month fixed effects is the most straightforward way of accomplishing this. However, 

households’ billing cycles vary substantially in our sample. We thus apply a simple 

                                                            
16 We found that attempting to match more homes by accounting for misspellings and other errors did not 
significantly increase the number of matches, at least for homes in the San Diego Gas and Electric utility area. 
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transformation to allocate energy use during a billing cycle to a particular calendar month.17 

Specifically, we calculate the proportion of days in each billing cycle that fell into each calendar 

month and then allocate that proportion of overall energy use to that month. For example, if a 

household used 100 kilowatt-hours (kWh) during a 31-day billing cycle that started on January 

10th 2015 and ended on February 9th 2015, we would allocate 22
31
∗ 100 = 71 kWh of usage to 

January 2015 and  9
31
∗ 100 = 21 kWh of usage to February 2015. Finally, we combine all 

energy use allocated to a particular month-year to arrive at each household’s mean daily energy 

use during a calendar month. 

Heating and cooling degree-days. We obtain the “typical meteorological year” for each 

zone from the California Energy Commission.18 Among other variables, the data report a 

“typical” temperature for each hour of the year for each climate zone. To construct these data, a 

slightly modified version of a procedure called the “Sandia method” (Hall et al. 1978) is applied 

to weather station records between 1998 and 2009. Each month of the typical meteorological 

year is selected from these records to be the most representative of the long-term distribution for 

that month. The historical month whose cumulative frequency distribution (CDF) has the 

smallest deviation from the long-term CDF is considered the most representative and the weather 

records from that month are used to describe the zone’s climate. By request of the CEC, the same 

year-month was chosen for each climate zone when constructing its typical weather for each 

month. We convert these hourly temperature data to annual heating and cooling degree days by 

using the dry-bulb temperature to calculate heating and cooling degrees each hour, adding the 

results up by zone-year, and dividing by 24. 

Summary statistics. Table 1 presents the summary statistics for the homes in our sample. The 

average home uses 188,600 BTUs per day, about 36% of which is electricity and 64% is natural 

gas. Even after eliminating homes built before 1947, the average year built in our sample is fairly 

low (1970), suggesting that we have many control homes that were not subject to building codes 

when they were constructed. The average home in our sample has almost 1,900 square feet of 

                                                            
17 An alternative would be to include billing cycle fixed effects rather than calendar month fixed effects. However, 
that would greatly increase the number of fixed effects and, because weather is autocorrelated, would not provide a 
clear advantage over the transformation we apply. 
18 Available from http://www.energy.ca.gov/title24/2016standards/ACM_Supporting_Content/. Accessed November 
2017. The data were created by White Box Technologies for the CEC. We thank Joe Huang for explaining the 
creation of these climate variables to us. 

http://www.energy.ca.gov/title24/2016standards/ACM_Supporting_Content/
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living space, 3.1 bedrooms, and 2.1 bathrooms. Finally, the average home in the sample is worth 

about $490,000, and the average annual household income is about $123,000. 

Table 2 shows select summary statistics for each income quintile. In the bottom quintile, 

households in our sample earn about $15,000 per year, live in houses with 1,313 square feet of 

living space, and use about 49,800 BTUs in electricity and 108,600 BTUs in natural gas daily. 

Household income in the second quintile averages almost $35,600 per year and living space 

averages about 1,350 square feet. These houses use slightly more electricity than the bottom 

quintile (51,900 BTUs) but use less natural gas. Electricity and natural gas use increase 

monotonically for the remaining quintiles at a rate that is similar to or lower than increases in 

square footage. The top quintile’s income averages 11.6 times more than the bottom quintile. 

Living space is about 70% larger than that of the bottom quintile, electricity use is 60% higher, 

and natural gas usage is about 25% higher. 

The average household income in our sample is substantially higher than that of 

California as a whole. In the full RefUSA sample for California, median household income is 

about $62,000, which is close to the 2010-2014 Census estimate of $61,489 (U.S. Census 2016). 

The differences arise because we restrict the sample to single-family homes built between 1947 

and 2006 that are located within 3 kilometers of a climate zone border. Each of these three 

restrictions has an independent and positive effect on the median and average incomes in the 

sample. Although our sample is thus richer than the typical California household, it still contains 

many households with fairly low incomes. Because we determine cutoffs for income quintiles 

using California microdata from the American Community Survey, the number of households in 

the lower quintiles is substantially smaller than the number of households in the upper quintiles 

(last column of Table 2). 

Distribution of energy use per dollar by income decile. It is beyond the scope of this paper to 

fully analyze the distributional impacts of residential energy use taxation. In order to do that 

accurately, we would need to know how the price elasticity of energy demand varies by income, 

to make assumptions about how tax revenues would be utilized, and to specify how taxes would 

impact the nonlinear energy price schedules. However, our summary statistics suggest that, 

without explicit efforts to address distributional consequences, a simple tax on residential energy 

consumption would be regressive.  



19 
 

We illustrate this point further by calculating the ratios of average daily electricity and 

natural gas use to annual income for each household in our sample. Figure 4 shows the median, 

the 10th, and the 90th percentiles of these ratios by income decile (the exact point estimates can be 

found in Online Appendix Table A4). The bottom decile uses 12.9 BTUs per day per dollar of 

income in electricity and 5.34 BTUs per day per dollar of income in natural gas. These ratios 

decline monotonically with income, although the rate of decline is lower at higher deciles. The 

top income decile uses 15-19 times less energy on a per-dollar-of-income basis than the bottom 

decile: about 0.64 BTUs per day per dollar of income in electricity and 0.36 BTUs per day per 

dollar of income in natural gas.  

Furthermore, there is a lot more heterogeneity in energy use per dollar of income in the lower 

deciles than in the top deciles. The 10th percentile of natural gas use declines from 2.27 BTUs per 

day per dollar (bottom decile) to 0.19 BTUs per day per dollar (top decile). By contrast, the 90th 

percentile declines from 12.01 to 0.67, a much larger drop in absolute terms. The pattern for 

electricity consumption is similar. These patterns further support the notion that, absent 

redistribution or significant adjustments by the bottom income deciles, residential energy 

consumption taxes would be highly regressive. 

IV. Results 
A. Testing the parallel trends assumption 

Our identification strategy requires that climate zone boundaries be independent of 

geographically-varying time trends that influence energy usage. If that is not the case, we could 

mistakenly attribute post-1981 differences in energy usage to building codes rather than to pre-

existing differential trends. Luckily, we have a large number of homes in our sample that were 

built prior to 1977, so we can directly test whether there are any trends differences that could not 

have been caused by building codes (absent differential sorting into older homes). We consider 

two of our main outcomes of interest: natural gas usage per square foot and electricity usage per 

square foot (in logs). 

 To probe our parallel trends assumption, we estimate a variant of equation (1) where we 

replace 𝛽𝛽1𝑃𝑃𝑐𝑐𝑃𝑃𝑅𝑅𝑖𝑖 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 + 𝛽𝛽2𝑃𝑃𝑐𝑐𝑃𝑃𝑅𝑅𝑖𝑖 ∗ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 with ∑ 𝛽𝛽𝑡𝑡1𝟏𝟏[𝑌𝑌𝐵𝐵𝑖𝑖 = 𝑅𝑅] ∗2006
𝑡𝑡=1947,𝑡𝑡≠1976

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖 + 𝛽𝛽𝑡𝑡2𝟏𝟏[𝑌𝑌𝐵𝐵𝑖𝑖 = 𝑅𝑅] ∗ 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑖𝑖. That is, we estimate an event study specification. The 

indicator 𝟏𝟏[𝑌𝑌𝐵𝐵𝑖𝑖 = 𝑅𝑅] is equal to 1 if home 𝐷𝐷 was built in year 𝑅𝑅. The reference category consists 
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of homes built in 1976, the year before California’s first statewide building code went into effect. 

Checking whether the 𝛽𝛽𝑡𝑡1,𝛽𝛽𝑡𝑡2 = 0 for 𝑅𝑅 < 1977 assesses whether there are any pre-existing 

trends along climate zone borders that are correlated with how we measure building code 

strictness. Conditional on the parallel trends assumption holding, coefficients for years 1982 and 

later inform us of the causal effects of building codes differences across climate zones on energy 

use. As in our main specification, we omit homes built in 1977-1981. 

Figure 5 provides a visual check of the parallel trends assumption and provides a preview 

of the treatment effect that we will discuss in the next section. Rather than plot 𝛽𝛽𝑡𝑡1 and 𝛽𝛽𝑡𝑡2 

separately, we plot their linear combinations, using the average difference in heating and cooling 

degree days in our sample (see previous section for discussion). In both panels of Figure 5, we 

see little evidence of differential trends prior to 1977, although a few of the linear combinations 

are statistically different from zero. Combined with the fact that the older homes exhibit similar 

seasonal patterns in energy use (see Online Appendix Figure A1), this result increases 

confidence in our identification strategy. Immediately following the introduction of climate 

zones, we see both electricity and natural gas usage fall significantly, then rebound to zero in the 

mid-1980s. We also see significant and negative treatment effects in the mid-to-late 1990s and 

the 2000s. The absence of a significant treatment effect in other years could be indicative of 

heterogeneous treatment effects over time, either due to non-constant cross-border differences in 

code stringency (due to building code revisions), variation in enforcement, or in how binding 

building energy codes are. Because the focus of this paper is on distributional consequences, we 

do not examine this intertemporal heterogeneity further, leaving it for future research. Instead, 

we proceed by estimating these and other treatment effects using a more parsimonious regression 

specification.  

B. Home characteristics 

First, we consider the possibility that more stringent building codes affect the observable 

characteristics of homes constructed after the climate zones begin to be enforced, namely square 

footage and number of bedrooms. The results for our main 3-kilometer sample are shown in 

columns 3 and 4 of Table 3. The estimates indicate that, on average, stricter building energy 

codes do not significantly affect homes’ square footage but cause the number of bedrooms to 

decrease by 0.73%. We probe the robustness of these results by restricting the sample to homes 
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located within 1 kilometer of a climate zone border (columns 1 and 2). The estimated fall in 

square footage becomes larger (-1.8%) and statistically significant. The estimated change in the 

number of bedrooms in the 1 kilometer sample is very similar to the 3 kilometer sample. Finally, 

estimates are also similar when we do not take the log of square footage and bedrooms (see 

Online Appendix Table A5). 

More interesting patterns emerge when we look at changes in living square footage for 

households in different income quintiles in Figure 6, again using a linear combination of the 

estimated coefficients.19 Specifically, the largest reductions in square footage occur in the bottom 

two income quintiles, with decreases of 4-6%. While estimates for the other quintiles are also 

negative, they are relatively small (less than 1%) and only the 4th quintile’s estimate is significant 

at the 5% level. Because we have only about 5,500 homes in the first quintile compared to 

165,000 homes in the fifth quintile, our standard errors for the poorer households are larger. 

However, even with large standard errors, we can rule out that households in the bottom income 

quintile do not experience any distortions to home attributes. Our findings for the number of 

bedrooms largely mirror our square footage results, with the exception that we see statistically 

significant reductions in all income quintiles. 

The finding that the distortions are largest at the bottom of the income distribution is perhaps 

surprising given that lower-income individuals tend to live in smaller homes and that the 

geometric assumptions inherent in the compliance software penalize more rectangular homes, 

which are presumably larger. However, higher-income households may be willing to pay more 

for additional square footage, limiting the desirability of reducing their home size compared to 

lower-income households. Next, we see how these and other (unobservable to us) changes in 

building practices translate into changes in energy usage. 

C. Energy usage 

Table 4 shows the effect of a more stringent energy building code on total energy use 

(natural gas plus electricity), in BTUs. To test for both unconditional and conditional changes in 

energy use, we consider both aggregate energy use and energy use per square foot. Note that we 

conduct some of our analyses on a per-square-foot basis not because this is the correct way to 

estimate the treatment effect of building energy codes, but to see whether there are energy use 

                                                            
19 Point estimates and standard errors for Figures 6-8 can be found in Online Appendix Tables A6-A8. 
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reductions through channels other than square footage. If builders respond to energy codes by 

distorting attributes such as square footage, then the distortion and the subsequent energy use 

changes are part of the treatment effect and should not be ignored. Thus, the right estimate of a 

building energy code’s net impact is the change in total energy use. In our 3-kilometer sample, 

we find no significant reduction in either total energy use or energy use per square foot (columns 

3 and 4). In the 1-kilometer sample, we estimate a significant 1% reduction in total energy use, 

but again no change on a per-square-foot basis.  

Tables 5 and 6 show the changes in natural gas and electricity consumption separately. 

Total natural gas use is unchanged, while total electricity consumption falls by about 1.0-1.3%. 

On a per-square-foot basis, we see no reductions in natural gas consumption, while electricity 

use per square foot falls by 0.6% in our preferred 3-kilometer sample. Overall, these results 

suggest that these (small) decreases in energy consumption are being achieved largely but not 

entirely through building smaller homes. 

Figure 7 shows the 3-kilometer estimates from Tables 4-6 broken down by income 

quintile. On an aggregate basis, we see no reductions in energy use in any quintile except for the 

second one, where energy use decreases by 4.1%. However, our standard errors for the first 

quintile are large, so that we cannot rule out similarly sized decreases in energy use for the 

poorest households. For the top three quintiles, we can rule out decreases larger than 1.5% with 

95% confidence. On a per-square-foot basis, we can rule our decreases of more than 1.6% for 

each of the five income quintiles, and we estimate that households at the bottom of the income 

distribution actually use more energy on a per-square-foot basis. Given that these households 

experience a decrease in home size, this finding could be mechanical if there are appliances 

whose energy use does not vary substantially with home size (e.g., dishwashers, refrigerators, 

washers/dryers, and water heaters).  

When we consider natural gas and electricity separately, the largest decrease at the 

dwelling level is in the second lowest income quintile, which sees a decline of 4.7% and 4.5% in 

natural gas and electricity, respectively. No other income quintile shows a decrease in natural gas 

use, although it again should be noted that our confidence interval for the lowest quintile is very 

wide. By contrast, we see significant but small (1.1-1.2%) decreases in aggregate electricity use 

for the top quintiles. On a per-square-foot basis, we see no significant decreases in natural gas for 

any quintile, and electricity consumption falls only for the top income quintile. Again, the 



23 
 

decrease is small (0.8%). Because the households at the top of the income distribution make up a 

disproportionate share of our sample, it should not be surprising that our overall findings are 

driven by this group. Thus, the overall energy savings that building codes create in our context 

are small and can be explained almost entirely by changes in homes’ square footage. 

It is worth considering how these energy use reductions translate into reductions in 

energy expenditure. This is especially important because low-income households are eligible for 

the California Alternate Rates for Energy (CARE) program, which provides them with a 30-35% 

discount on electricity and a 20% discount on natural gas (California Public Utilities 

Commission, 2018). Households with slightly higher incomes are eligible for a 12% discount 

through the Family Electric Rate Assistance Program (FERA) program. Eligibility for each 

program is determined by a combination of household size and household income.  

Table 7 uses the point estimates from Figure 7 combined with 2016 marginal rates in the 

first energy use tier to calculate average monetary savings for each quintile-utility combination.20 

Specifically, we multiply average annual usage in each quintile by the estimated percent saving 

and the average marginal energy rate, weighted by the proportion of CARE households in each 

income quintile. Unfortunately, our data from PG&E (about 16% of our sample) do not contain 

information about which households are enrolled in CARE, so we use the average shares from 

the other utilities to calculate the average marginal rate.  

It is clear from Table 7 that the largest monetary savings accrue to lower-income 

households. For example, SDGE customers in the second income quintile save $21 per year on 

natural gas and $59 per year on electricity, while those in the fifth income quintile save an 

insignificant $1.2 on natural gas and $27 per year on electricity. Accounting for prices also 

reduces the differences between quintiles as compared to energy quantities, because many of the 

lower-income households face lower energy use rates. 

D. Housing prices 

Finally, we consider the effect of stricter building energy codes on housing prices. 

Building energy codes may differentially affect the prices of homes that do and do not face a 

more stringent code through two channels. First, Myers (2017) and Aydin et al. (2017) show 
                                                            
20 In 2016, there were three pricing tiers for electricity and two pricing tiers for natural gas. The marginal rates used 
for this exercise as well as calculations for the higher tiers can be found in Online Appendix Tables A9-A10 and 
A11, respectively. 
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significant capitalization of energy costs into home prices. If building codes reduce energy use 

and the reduction is capitalized into the home price, then homes that were built under stricter 

codes will command a price premium. Second, building energy codes may affect other home 

attributes (e.g., square footage), some of which may be unobservable to us (e.g., how drafty a 

home is). Depending on how the attribute is perceived and valued by the buyer, the second 

channel could increase or decrease sale prices (e.g. Houde 2016).  

Of course, homes facing more stringent building energy codes are also weakly more 

expensive to build (strictly if the codes are binding). Unfortunately, it is essentially impossible 

for us to calculate the additional costs imposed by the introduction and subsequent revisions of 

California’s building energy codes, as we observe neither the attributes of pre-code homes (and 

thus cannot tell how out-of-compliance older homes were) nor the attributes of post-code ones. 

Intuitively, who bears the incidence of these costs depends on the relative elasticities of supply 

and demand and, in the case of imperfectly competitive markets, on the markup above marginal 

cost (Weyl and Fabinger 2013). Incidence can thus vary across the different areas in our sample: 

in areas where land available for building is relatively scarce (e.g., the Bay Area) and supply is 

therefore inelastic, buyers will bear a smaller share of the burden relative to areas where land for 

building is elastically supplied. 

To understand what our estimates of the effect of building energy codes on home prices 

capture, we note that the assessed values we observe are largely based on existing homes being 

sold from one owner-occupant to another owner-occupant. Once a home is built, the construction 

costs become sunk costs and should not matter for resale. Consistent with this idea, Bruegge et 

al. (2016) find that the initial sale price premium for energy star homes disappears in the resale 

market. Because new homes are more expensive to build in the presence of a stricter building 

code, existing homes should command a higher price in stricter building code regimes. However, 

this effect should be the same for pre- and post-code homes on each side of the borders in our 

sample and thus not affect our estimates of the treatment effect.  

Our difference-in-differences strategy is also helpful for purging the price estimates of 

other location-specific confounding factors. For example, Glaeser and Gyourko (2003) point to 

the importance of construction costs, land scarcity/building restrictions, and population growth 

for determining homes’ sale prices. Intuitively, if an area is gaining population, the resale price 

of a house should be bounded below by construction costs. If there are no constraints on land and 
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no spatially differentiated amenities, the price of existing homes should also not exceed new 

construction costs (because a buyer can always buy a new house instead). Otherwise, prices can 

be above construction costs. By similar reasoning, if an area is losing population, home prices 

can fall below construction costs. However, both older (pre-code) and newer homes will be 

affected by these dynamics. Thus, our difference-in-differences strategy will isolate home value 

effects that are solely due to differences in the characteristics of existing homes (i.e., energy use 

and/or other attributes). 

Finally, it is worth noting how energy prices would affect the capitalization of building 

energy codes into home values. At one extreme, if energy prices are zero, then so is the value of 

any reduction in energy consumption. Because building energy codes affect other attributes, 

however, we would not necessarily expect to find no effects on home value even if the price of 

energy were zero. In principle, we could estimate how the capitalization of building energy codes 

into home values varies with the local price of energy. However, electricity and natural gas rates 

depend on the utility and, within utility, on the geographic area in which the home is located. For 

both of these reasons, energy prices have a strong geographic component and are not as good as 

randomly assigned. Thus, any estimation involving energy prices would also pick up any 

heterogeneous treatment effects that are correlated with energy prices (e.g., a warmer climate). 

For this reason, we focus on the average treatment effect rather than introduce heterogeneity.  

The effects of building energy codes on home prices across the entire income distribution 

are shown in Table 8. We detect a significant price increase of about 2.1% in the 3-kilometer 

sample, both on aggregate and on a per-square-foot basis (columns 3 and 4). The increase in 

home prices on a per-square-foot basis is similar in columns 1 and 2, where we restrict the 

sample to 1 kilometers around a border, while the aggregate price increase is smaller (about 

0.8%).  

Figure 8 shows the estimated changes in home prices by quintile. We see large and 

significant decreases in home prices in the bottom two quintiles (12% and 7.7%, respectively) 

and moderate significant increases in prices for the top two quintiles (2.8% and 1.6%, 

respectively). About half of the fall in prices in the bottom two quintiles can be explained by 

changes in square footage, as the percent change in price per-square-foot is about half the size of 

the total percent change in price. For the top two quintiles, the aggregate increases are similar to 

the per-square-foot increases, suggesting that building energy codes lead to changes in 
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(unobservable to us) home characteristics that are valued positively by households. Importantly, 

these price increases cannot be explained by the observed reductions in energy use. For the 

average home in these top quintiles, the observed estimates imply an increase in home value of 

over $10,000. The largest reduction in electricity use we observe is 1.2%. Even assuming that the 

household is paying a high marginal price for electricity (see Online Appendix Table A11), the 

net present value of the reductions in energy use is about an order of magnitude smaller than the 

increase in home value. Of course, there may be a rebound effect, which we also cannot observe, 

but it would have to be very large to account for the entire difference in home value. Thus, it is 

more plausible that building energy codes cause changes in the characteristics of high-income 

homes that households value for reasons other than their impact on a home’s energy use.  

V. Discussion and conclusion 

We adopt a novel approach to estimating the causal effect of building energy codes on 

energy usage by using temporal and spatial discontinuities in the code’s strictness across 

California’s 16 climate zones and a sample of homes that are located within 3 kilometers of 

climate zone boundaries. Comparing cross-border differences in the energy use of homes built 

before the introduction of a state-wide building code in 1977 to differences in the energy use and 

home characteristics of homes built after the introduction of modern climate zones in 1982, we 

find strong evidence that building energy codes led builders to change their building practices, 

resulting in smaller homes, especially for the lowest-income households. Higher-income 

households experience much smaller distortions in square footage and the number of bedrooms. 

These results suggest that such distortions are more costly to builders of high-income homes, 

perhaps because higher-income buyers are more price elastic with respect to square footage than 

lower-income buyers. 

Homes built in more stringent building code regimes use less electricity, but the 

difference is small and largely driven by the smaller square footage. We see the largest 

percentage reductions in energy usage among lower-income households, but after accounting for 

the reduction in square footage, only a small electricity consumption decrease for the top income 

quintile remains. This result suggests that energy use reductions are achieved largely through 

reductions in home size. Nonetheless, because the home size reductions are part of the total 

treatment effect, building energy codes do save some energy, especially for lower income 
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households. However, low-income households on average consume 20-40% less energy than 

high-income households (depending on which quintiles we compare), making any proportional 

reduction smaller in absolute terms. Low-income households also pay less for energy, because 

California has an increasing block rate structure as well as a special low-income rate schedule. 

Thus, any reductions in energy use are worth less in absolute terms to these households. 

We then examine the capitalization of building energy codes into home values. At the 

bottom of the income distribution, home prices fall, partly due to the decreased square footage of 

affected homes. At the top of the income distribution, prices increase for reasons that are 

unobservable to us. The energy use reductions for higher-income households are small, and the 

net present value of savings is an order of magnitude smaller than the increase in home prices, 

even if we assume a high marginal price of electricity. This fact suggests that building energy 

codes provide other benefits to these households that are difficult to measure directly, such as 

lower draftiness.  

While our framework cannot identify the effect of the building code on consumer welfare 

across income quintiles, it is clear from our analysis that builders comply with building energy 

codes by changing secondary home attributes, i.e., those that are not directly targeted by the 

codes, such as square footage and the number of bedrooms. Even though the value of the energy 

savings is largest for households in the bottom half of the income distribution, these savings are 

brought about by reducing these households’ home size. For them, the distortions in attributes 

lead to a reduction in home value, while for higher income households the distortions increase 

home value. If these changes do not correct for market failures such as asymmetric information 

or inattention, then building codes appear to be somewhat regressive. 

The fact that energy building codes may lead to a distortion of secondary home attributes 

has two key implications, one for future research and one for policy. First, researchers should be 

wary of using solely intertemporal variation to estimate the causal effect of building codes on 

energy use, as bias could arise regardless of whether one controls for home attributes or not. 

Second, unless extremely well-designed, building codes can contain incentives not deliberately 

created by policymakers and subsequently have unintended consequences. 
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FIGURES 

 
Figure 1. Building climate zones in California 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
 

 

 

 

Source: California Energy Commission. Numbers inside or next to each area represent the climate zone number. 
Inset on the left represents area inside the black rectangle in the full map. 
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 Figure 2. Territories of electric and gas utilities in our sample  

Natural gas      Electricity 

 

Source: California Energy Commission. Utilities in our sample include Pacific Gas and Electric (PG&E), Southern 
California Gas (SCG), Southern California Electric (SCE), and San Diego Gas and Electric (SDG&E). Unlabeled 
areas correspond to other utilities’ territories or areas where service is not available. 
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Figure 3. Locations of in-sample homes 
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Figure 4. Energy use per dollar of income by income decile 

Solid lines correspond to median daily electricity (left panel) or gas (right panel) use in BTUs per dollar of 

annual household income for each income decile. Dashed lines represent the 10th and 90th percentiles.  
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Figure 5. Trends in energy use per square foot before and after the introduction of climate zones 

Panels show point estimates and 95 percent confidence intervals for the estimated treatment effect in each year, as 
specified by equation (1), relative to 1976 (the year before California’s building code went into effect). The energy 
metric is indicated above each panel. 

 

 
Figure 6. Effect of building energy codes on home characteristics by income quintile 

Panels show difference-in-differences coefficients and 95 percent confidence intervals for each income quintile, 
estimated using equation (2). Standard errors are clustered by zip code. Controls include income-quintile-by-border 
fixed effects, year-built-by-border fixed effects, and zip code fixed effects. The outcome variable is indicated above 
each panel. 
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Figure 7. Effect of building energy codes on energy use by income quintile 
 

 
 

Panels show difference-in-differences coefficients and 95 percent confidence intervals for each income quintile, 
estimated using equation (2). Standard errors are two-way clustered by dwelling and month-of-sample. Controls 
include year-built-by-border fixed effects, border-by-income-quintile fixed effects, zip-code-by-month-of-sample 
fixed effects, and border-specific linear controls for latitude and longitude. The outcome variable is indicated above 
each panel. 
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Figure 8. Effect of building energy codes on home prices by income quintile 

Panels show difference-in-differences coefficients and 95 percent confidence intervals for each income quintile, 
estimated using equation (2). Standard errors are clustered by zip code. Controls include income-quintile-by-border 
fixed effects, year-built-by-border fixed effects, and zip code fixed effects. The outcome variable is indicated above 
each panel. 
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